A study on image processing techniques and deep learning techniques for insect identification

V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar
{"title":"A study on image processing techniques and deep learning techniques for insect identification","authors":"V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar","doi":"10.33640/2405-609x.3289","DOIUrl":null,"url":null,"abstract":"Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karbala International Journal of Modern Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33640/2405-609x.3289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.
昆虫识别的图像处理技术和深度学习技术研究
摘要昆虫和疾病的自动识别在过去几年里吸引了研究人员。研究人员提出了几种算法来解决手动识别昆虫和害虫的问题。图像处理技术和深度卷积神经网络可以克服人工昆虫识别和分类的挑战。这项工作的重点是优化和评估用于昆虫识别的深度卷积神经网络。AlexNet、MobileNetv2、ResNet-50、ResNet-101、GoogleNet、InceptionV3、SqueezeNet、ShuffleNet、DenseNet201、VGG-16和VGG-19是在三个不同数据集上评估的架构。在我们的实验中,DenseNet 201以最高的测试精度表现良好。关于训练时间,AlexNet表现良好,但ShuffleNet、SqueezeNet和MobileNet是小型架构的更好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Karbala International Journal of Modern Science
Karbala International Journal of Modern Science Multidisciplinary-Multidisciplinary
CiteScore
2.50
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信