Functional differential equations最新文献

筛选
英文 中文
OSCILLATIONS OF HIGHER-ORDER RETARDED DIFFERENTIAL EQUATIONS GENERATED BY THE RETARDED ARGUMENT 由迟滞参数产生的高阶迟滞微分方程的振荡
Functional differential equations Pub Date : 1900-01-01 DOI: 10.1016/B978-0-12-627250-5.50013-7
G. Ladas, V. Lakshmikantham, J. Papadakis
{"title":"OSCILLATIONS OF HIGHER-ORDER RETARDED DIFFERENTIAL EQUATIONS GENERATED BY THE RETARDED ARGUMENT","authors":"G. Ladas, V. Lakshmikantham, J. Papadakis","doi":"10.1016/B978-0-12-627250-5.50013-7","DOIUrl":"https://doi.org/10.1016/B978-0-12-627250-5.50013-7","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116930465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 127
SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE 共振时的顺序分数阶微分方程
Functional differential equations Pub Date : 1900-01-01 DOI: 10.26351/fde/26/3-4/2
BAITICHE, Z., GUERBATI, K., HAMMOUCHE, H., BENCHOHRA, M., GRAEF, J.
{"title":"SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE","authors":"BAITICHE, Z., GUERBATI, K., HAMMOUCHE, H., BENCHOHRA, M., GRAEF, J.","doi":"10.26351/fde/26/3-4/2","DOIUrl":"https://doi.org/10.26351/fde/26/3-4/2","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125050279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Remarks on the Strong Solvability of the Navier-Stokes Equations 关于Navier-Stokes方程强可解性的评述
Functional differential equations Pub Date : 1900-01-01 DOI: 10.5167/UZH-21987
H. Amann
{"title":"Remarks on the Strong Solvability of the Navier-Stokes Equations","authors":"H. Amann","doi":"10.5167/UZH-21987","DOIUrl":"https://doi.org/10.5167/UZH-21987","url":null,"abstract":"Throughout this note m≥3 and either Ω=Rm, or Ω is a half-space of Rm, or Ω is a smooth domain in Rm with a compact boundary ∂Ω. We consider the following initial-boundary value problem (1) for the Navier-Stokes equations: \u0000∇⋅v∂tv+(v⋅∇)v−νΔvvv(⋅,0)=0=−∇p=0=v0in Ω,in Ω,on ∂Ω,in Ω. \u0000Of course, there is no boundary condition if Ω=Rm. \"In a recent paper [J. Math. Fluid Mech. 2 (2000), no. 1, 16--98] we investigated the strong solvability of (1) for initial data v0 belonging to certain spaces of distributions (modulo gradients). In this note we explain some of our main results in a very particular and simple setting. As usual, we concentrate on the velocity field v since the pressure field p is determined up to a constant by v.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129436044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信