Remarks on the Strong Solvability of the Navier-Stokes Equations

H. Amann
{"title":"Remarks on the Strong Solvability of the Navier-Stokes Equations","authors":"H. Amann","doi":"10.5167/UZH-21987","DOIUrl":null,"url":null,"abstract":"Throughout this note m≥3 and either Ω=Rm, or Ω is a half-space of Rm, or Ω is a smooth domain in Rm with a compact boundary ∂Ω. We consider the following initial-boundary value problem (1) for the Navier-Stokes equations: \n∇⋅v∂tv+(v⋅∇)v−νΔvvv(⋅,0)=0=−∇p=0=v0in Ω,in Ω,on ∂Ω,in Ω. \nOf course, there is no boundary condition if Ω=Rm. \"In a recent paper [J. Math. Fluid Mech. 2 (2000), no. 1, 16--98] we investigated the strong solvability of (1) for initial data v0 belonging to certain spaces of distributions (modulo gradients). In this note we explain some of our main results in a very particular and simple setting. As usual, we concentrate on the velocity field v since the pressure field p is determined up to a constant by v.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional differential equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-21987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout this note m≥3 and either Ω=Rm, or Ω is a half-space of Rm, or Ω is a smooth domain in Rm with a compact boundary ∂Ω. We consider the following initial-boundary value problem (1) for the Navier-Stokes equations: ∇⋅v∂tv+(v⋅∇)v−νΔvvv(⋅,0)=0=−∇p=0=v0in Ω,in Ω,on ∂Ω,in Ω. Of course, there is no boundary condition if Ω=Rm. "In a recent paper [J. Math. Fluid Mech. 2 (2000), no. 1, 16--98] we investigated the strong solvability of (1) for initial data v0 belonging to certain spaces of distributions (modulo gradients). In this note we explain some of our main results in a very particular and simple setting. As usual, we concentrate on the velocity field v since the pressure field p is determined up to a constant by v.
关于Navier-Stokes方程强可解性的评述
在本文中,m≥3,或者Ω=Rm,或者Ω是Rm的半空间,或者Ω是Rm中具有紧边界∂Ω的光滑域。我们考虑以下Navier-Stokes方程的初始边值问题(1):∇⋅v∂tv+(v⋅∇)v−νΔvvv(⋅,0)=0=−∇p=0=v0在Ω中,在Ω中,在∂Ω中,在Ω中。当然,如果Ω=Rm,则不存在边界条件。在最近的一篇论文[J]。数学。流体力学2(2000),第2号。[1,16—98]我们研究了(1)对于属于某些分布空间(模梯度)的初始数据v0的强可解性。在本文中,我们将在一个非常特殊和简单的设置中解释我们的一些主要结果。像往常一样,我们集中在速度场v,因为压力场p是由v决定的,直到一个常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信