Functional differential equations最新文献

筛选
英文 中文
NONLOCAL INTEGRAL BOUNDARY VALUE PROBLEMS WITH CAUSAL OPERATORS AND FRACTIONAL DERIVATIVES 具有因果算子和分数阶导数的非局部积分边值问题
Functional differential equations Pub Date : 2020-10-01 DOI: 10.26351/FDE/27/1-2/5
G. Wang, L. Zhang, R. Agarwal
{"title":"NONLOCAL INTEGRAL BOUNDARY VALUE PROBLEMS WITH CAUSAL OPERATORS AND FRACTIONAL DERIVATIVES","authors":"G. Wang, L. Zhang, R. Agarwal","doi":"10.26351/FDE/27/1-2/5","DOIUrl":"https://doi.org/10.26351/FDE/27/1-2/5","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"28 9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125693587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH NONLINEAR NEUTRAL TERMS 具有非线性中立项的三阶非线性微分方程
Functional differential equations Pub Date : 2020-10-01 DOI: 10.26351/FDE/27/1-2/1
G. Chatzarakis, S. Grace
{"title":"THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH NONLINEAR NEUTRAL TERMS","authors":"G. Chatzarakis, S. Grace","doi":"10.26351/FDE/27/1-2/1","DOIUrl":"https://doi.org/10.26351/FDE/27/1-2/1","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123758002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
OSCILLATION OF UNBOUNDED SOLUTIONS OF FOURTH ORDER NEUTRAL DYNAMIC EQUATIONS VIA TAYLOR’S FORMULA 用泰勒公式求解四阶中立型动力方程无界解的振动
Functional differential equations Pub Date : 2020-10-01 DOI: 10.26351/FDE/27/1-2/2
A. Tripathy
{"title":"OSCILLATION OF UNBOUNDED SOLUTIONS OF FOURTH ORDER NEUTRAL DYNAMIC EQUATIONS VIA TAYLOR’S FORMULA","authors":"A. Tripathy","doi":"10.26351/FDE/27/1-2/2","DOIUrl":"https://doi.org/10.26351/FDE/27/1-2/2","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"200 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116154983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Functional Differential Equations with Markovian Switching 具有马尔可夫切换的随机泛函微分方程
Functional differential equations Pub Date : 2004-10-05 DOI: 10.1142/9781860948848_0008
X. Mao
{"title":"Stochastic Functional Differential Equations with Markovian Switching","authors":"X. Mao","doi":"10.1142/9781860948848_0008","DOIUrl":"https://doi.org/10.1142/9781860948848_0008","url":null,"abstract":"The main aim of this paper is to investigate the exponential stability of stochastic functional differential equations with Markovian switching. The Razumikhin argument and the generalized Ito formula will play an important role in this paper. Applying our new results to several important types of equations e.g. stochastic differential delay equations and stochastic differential equations, both with Markovian switching, we obtain a number of very useful results. Several examples are also given for illustration.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115740486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
About sign-constancy of Green’s function of a two-point problem for impulsive second order delay equations 关于脉冲二阶延迟方程两点问题格林函数的符号-常数性
Functional differential equations Pub Date : 2004-10-05 DOI: 10.14232/EJQTDE.2016.8.9
A. Domoshnitsky, Guy Landsman, S. Yanetz
{"title":"About sign-constancy of Green’s function of a two-point problem for impulsive second order delay equations","authors":"A. Domoshnitsky, Guy Landsman, S. Yanetz","doi":"10.14232/EJQTDE.2016.8.9","DOIUrl":"https://doi.org/10.14232/EJQTDE.2016.8.9","url":null,"abstract":"We consider the following second order dierential equation with delay In this paper we nd sucient conditions of positivity of Green's functions for this impulsive equation coupled with one-point boundary conditions in the form of theorems about dierential inequalities. Choosing the test function in these theorems, we obtain simple sucient conditions.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116307226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Classical solutions of quasilinear functional differential systems of the Haar pyramid Haar金字塔拟线性泛函微分系统的经典解
Functional differential equations Pub Date : 2004-10-05 DOI: 10.7153/dea-01-09
Elżbieta Puźniakowska
{"title":"Classical solutions of quasilinear functional differential systems of the Haar pyramid","authors":"Elżbieta Puźniakowska","doi":"10.7153/dea-01-09","DOIUrl":"https://doi.org/10.7153/dea-01-09","url":null,"abstract":"The Cauchy problem for a quasilinear ftmctional differential system is considered. A theorem on the existence of classical solutions defined on the Haar pyramid is proved. The theory of bicharacteristics and the method of successive approximations are used. Differential systems with deviated variables and differential integral systems can be obtained from a general theory by specializing given operators.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126549470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Positive solutions of first order boundary value problems with nonlinear nonlocal boundary conditions and application to Hematopoiesis 非线性非局部边界条件一阶边值问题的正解及其在造血中的应用
Functional differential equations Pub Date : 2004-10-05 DOI: 10.3906/mat-1512-64
S. Pati, P. Srinivasu, S. Padhi
{"title":"Positive solutions of first order boundary value problems with nonlinear nonlocal boundary conditions and application to Hematopoiesis","authors":"S. Pati, P. Srinivasu, S. Padhi","doi":"10.3906/mat-1512-64","DOIUrl":"https://doi.org/10.3906/mat-1512-64","url":null,"abstract":"In this paper, existence criteria for positive solutions of the following nonlinear first order boundary value problem with nonlinear nonlocal boundary condition","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133539869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A REVIEW ON THE EVOLUTION OF THE CONFORMABLE DERIVATIVE 合形导数的演化述评
Functional differential equations Pub Date : 1900-01-01 DOI: 10.26351/fde/29/1-2/2
F. C. Etinkaya
{"title":"A REVIEW ON THE EVOLUTION OF THE CONFORMABLE DERIVATIVE","authors":"F. C. Etinkaya","doi":"10.26351/fde/29/1-2/2","DOIUrl":"https://doi.org/10.26351/fde/29/1-2/2","url":null,"abstract":"This review paper focuses on the evolution of the conformable derivative. The review starts with expressing the idea behind the first research on the so-called conformable fractional derivative and examining some recent related papers. Then it continues mentioning some opposing papers which argue that the so-called conformable fractional derivative is actually not a fractional derivative because it lacks some of the agreed upon properties for fractional derivatives. The paper is closed by discussing another point of view on the theory of conformable derivatives.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116923796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPONENTIAL STABILITY FOR SYSTEMS OF VECTOR NEUTRAL DIFFERENTIAL EQUATIONS 向量中立型微分方程系统的指数稳定性
Functional differential equations Pub Date : 1900-01-01 DOI: 10.26351/fde/29/3-4/3
L. Berezansky, Eric P. Braverman
{"title":"EXPONENTIAL STABILITY FOR SYSTEMS OF VECTOR NEUTRAL DIFFERENTIAL EQUATIONS","authors":"L. Berezansky, Eric P. Braverman","doi":"10.26351/fde/29/3-4/3","DOIUrl":"https://doi.org/10.26351/fde/29/3-4/3","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126080074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE W-METHOD IN STABILITY ANALYSIS OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS 随机泛函微分方程稳定性分析中的w方法
Functional differential equations Pub Date : 1900-01-01 DOI: 10.26351/fde/29/3-4/4
R. Kadiev, A. Ponosov
{"title":"THE W-METHOD IN STABILITY ANALYSIS OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS","authors":"R. Kadiev, A. Ponosov","doi":"10.26351/fde/29/3-4/4","DOIUrl":"https://doi.org/10.26351/fde/29/3-4/4","url":null,"abstract":"","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125323779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信