关于脉冲二阶延迟方程两点问题格林函数的符号-常数性

A. Domoshnitsky, Guy Landsman, S. Yanetz
{"title":"关于脉冲二阶延迟方程两点问题格林函数的符号-常数性","authors":"A. Domoshnitsky, Guy Landsman, S. Yanetz","doi":"10.14232/EJQTDE.2016.8.9","DOIUrl":null,"url":null,"abstract":"We consider the following second order dierential equation with delay In this paper we nd sucient conditions of positivity of Green's functions for this impulsive equation coupled with one-point boundary conditions in the form of theorems about dierential inequalities. Choosing the test function in these theorems, we obtain simple sucient conditions.","PeriodicalId":175822,"journal":{"name":"Functional differential equations","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"About sign-constancy of Green’s function of a two-point problem for impulsive second order delay equations\",\"authors\":\"A. Domoshnitsky, Guy Landsman, S. Yanetz\",\"doi\":\"10.14232/EJQTDE.2016.8.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following second order dierential equation with delay In this paper we nd sucient conditions of positivity of Green's functions for this impulsive equation coupled with one-point boundary conditions in the form of theorems about dierential inequalities. Choosing the test function in these theorems, we obtain simple sucient conditions.\",\"PeriodicalId\":175822,\"journal\":{\"name\":\"Functional differential equations\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional differential equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/EJQTDE.2016.8.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional differential equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2016.8.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文用微分不等式定理的形式给出了该脉冲方程与一点边界条件耦合的格林函数的正性条件。选取这些定理中的检验函数,得到了简单的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About sign-constancy of Green’s function of a two-point problem for impulsive second order delay equations
We consider the following second order dierential equation with delay In this paper we nd sucient conditions of positivity of Green's functions for this impulsive equation coupled with one-point boundary conditions in the form of theorems about dierential inequalities. Choosing the test function in these theorems, we obtain simple sucient conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信