Journal of Thermoplastic Composite Materials最新文献

筛选
英文 中文
Quality improvement of Nd: YAG laser marked DMC and QR codes on the surface of PBT/glass fiber composites by DOE methodology 利用 DOE 方法提高 PBT/玻璃纤维复合材料表面 Nd: YAG 激光标记 DMC 和 QR 码的质量
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-26 DOI: 10.1177/08927057241251826
Rita de Cássia Mendonça Sales-Contini, João Pedro Costa, Arnaldo MG Pinto, Francisco JG Silva, Isabel M Pinto, Vitor FC Sousa
{"title":"Quality improvement of Nd: YAG laser marked DMC and QR codes on the surface of PBT/glass fiber composites by DOE methodology","authors":"Rita de Cássia Mendonça Sales-Contini, João Pedro Costa, Arnaldo MG Pinto, Francisco JG Silva, Isabel M Pinto, Vitor FC Sousa","doi":"10.1177/08927057241251826","DOIUrl":"https://doi.org/10.1177/08927057241251826","url":null,"abstract":"Laser technology plays an important role in today’s industrial environment. Laser marking is typically used at the end of the production chain to personalize products and make them traceable to the point of sale. One of the challenges of laser marking is the difficulty of creating contrasts whose reflectivity can cause readability problems for electronic decoding devices on production lines, known as scanners. This problem is related to the wrong choice of marking parameters, which results in waste for companies in terms of production stoppages due to rejection, scrap, and customer complaints. Although these problems are common, this process is increasingly used in the industry. Therefore, there is a gap in studies in this field to optimize the marking parameters in many materials, such as PBT (polybutylene terephthalate). The present work was developed in a final assembly line of instrument clusters for motorcycles, where tests were carried out with different types of laser marking parameters, through the implementation of a factorial DoE, with a specific type of laser and material. The laser-marked codes were analyzed in a laboratory using a verifier to assess quality according to ISO/IEC 29158:2020. It was found that the lower the parameter values, the poorer the quality of the codes. The data were statistically processed, and it was possible to identify the marking parameters that ensured the best quality and process performance for DMC and QR codes.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"103 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in smart materials soft actuators on mechanisms, fabrication, materials, and multifaceted applications: A review 智能材料软致动器在机理、制造、材料和多方面应用方面的进展:综述
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-22 DOI: 10.1177/08927057241248028
Michael Enyan, Zhang Bing, Jesse Nii Okai Amu-Darko, Eliasu Issaka, Samuel Leumas Otoo, Michael Freduah Agyemang
{"title":"Advances in smart materials soft actuators on mechanisms, fabrication, materials, and multifaceted applications: A review","authors":"Michael Enyan, Zhang Bing, Jesse Nii Okai Amu-Darko, Eliasu Issaka, Samuel Leumas Otoo, Michael Freduah Agyemang","doi":"10.1177/08927057241248028","DOIUrl":"https://doi.org/10.1177/08927057241248028","url":null,"abstract":"The soft actuators of smart materials have attracted significant attention in recent years due to their unique functions and distinctive characteristics. The actuators are composed of smart materials that can demonstrate substantial alterations in their dimensions, shape, or mechanical characteristics when subjected to external stimuli, including but not limited to temperature, light, electricity, or magnetic fields. These aforementioned characteristics render them highly advantageous for various applications, including tissue engineering, prosthetics, surgical robots, drug delivery, and soft robotics. A deeper understanding of the principles of the actuators is crucial for their development and application expansion. This article provides a comprehensive analysis of soft actuators made from smart materials, explaining their underlying concepts, operational mechanisms, material composition, production techniques, and the diverse range of applications across various fields, including tissue engineering, prosthetics, surgical robotics, drug delivery systems, and the emerging field of soft robotics. This review further highlights the current challenges and prospects to address these problems to enable their ability to revolutionize into a variety of different technical fields.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"30 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machinability of wood-plastic composites from the CNC milling process using the Box-Behnken design and response surface methodology for building applications 采用方框-贝肯设计和响应面方法对木塑复合材料进行数控铣削加工,以提高其在建筑应用中的可加工性
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-17 DOI: 10.1177/08927057241248036
Chatree Homkhiew, Watthanaphon Cheewawuttipong, Chainarong Srivabut, Worapong Boonchouytan, Surasit Rawangwong
{"title":"Machinability of wood-plastic composites from the CNC milling process using the Box-Behnken design and response surface methodology for building applications","authors":"Chatree Homkhiew, Watthanaphon Cheewawuttipong, Chainarong Srivabut, Worapong Boonchouytan, Surasit Rawangwong","doi":"10.1177/08927057241248036","DOIUrl":"https://doi.org/10.1177/08927057241248036","url":null,"abstract":"This research investigated the optimization of CNC milling parameters on hardness and surface roughness properties resulting from variations in speed (220, 470, and 720 rpm), feed rate (200, 300, and 400 mm/min), and depth of cut (3, 5, and 7 mm) based on experimental design. This study aimed to evaluate the effects and relation of milling parameters using different end mill diameters (8 and 12 mm) for machining wood-plastic composites (WPCs). All of the experimental runs were determined by the Box-Behnken design and optimized using the response surface methodology. The findings from this study revealed that the main milling parameters significantly affected the hardness, average roughness ( Ra), and mean peak-to-valley height ( Rz) of the WPCs. Increasing the speed in a range from 220 to 720 rpm resulted in higher hardness values. On the other hand, the Ra and Rz was decreased. Additionally, this experimental result is different from the morphological structure and surface observation. It was seen that the CNC milling conditions using high speed at 720 rpm displayed smooth surfaces, which resulted in visible evenness on the WPC surfaces. Finally, numerical optimization is a good technique for the experimental results and the predicted values. The predicted conditions for the CNC milling process using end mill diameters of 8 and 12 mm included a speed of 720 rpm, a feed rate of 300 mm/min, and a depth of cut of 3 mm with the best desirability of 0.973 (97.30%). These conditions were verified in the response models and confirmed the optimal values from observed values for the variables included in the models. Also, these optimal conditions for the CNC milling parameters can be used on other types of WPCs with melting points of plastic higher than 180°C.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current application of recycled waste plastics as a sustainable materials: A review on availability, processing and application 回收废塑料作为可持续材料的应用现状:可用性、加工和应用综述
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-16 DOI: 10.1177/08927057241248040
Isiaka Oluwole Oladele, Christian Junior Okoro, Samson Oluwagbenga Adelani, Newton Itua Agbeboh, Olakunle Timothy Betiku
{"title":"Current application of recycled waste plastics as a sustainable materials: A review on availability, processing and application","authors":"Isiaka Oluwole Oladele, Christian Junior Okoro, Samson Oluwagbenga Adelani, Newton Itua Agbeboh, Olakunle Timothy Betiku","doi":"10.1177/08927057241248040","DOIUrl":"https://doi.org/10.1177/08927057241248040","url":null,"abstract":"Interest in green environment and sustainable materials in agreement with government regulations have been the motivating force for researchers and various industries globally in recent times. This current need for novel materials along with ever-increasing environmental apprehensions has prompted global researchers to intensify their activities in repurposing waste plastics. Waste plastics in many parts of the world, present a substantial menace to the environment on a global scale underscoring the necessity of this review to spotlight methods for safely and economically managing and converting these materials into valuable end products. The review paper reveals the accessibility and vast potential of a class of materials that was previously deemed as waste but now finding beneficial applications. Hence, diverse sectors where products from waste plastic-based materials are applicable such as construction, electronics, agriculture, automotive, household goods, sports gear, and fossil fuel were considered. Thus, the review reveals waste plastics as readily accessible raw materials for various applications, thereby, aiding in environmental pollution mitigation efforts and value addition to waste plastics.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"8 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pivotal role of the polyethylene glycol amount as compatibilizing on the morphological features of silica-based blends 作为相容剂的聚乙二醇量对硅基混合物形态特征的关键作用
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-16 DOI: 10.1177/08927057241248035
Michelina Catauro, Marialuigia Raimondo, Luigi Vertuccio, Liberata Guadagno, Antonio D’Angelo
{"title":"The pivotal role of the polyethylene glycol amount as compatibilizing on the morphological features of silica-based blends","authors":"Michelina Catauro, Marialuigia Raimondo, Luigi Vertuccio, Liberata Guadagno, Antonio D’Angelo","doi":"10.1177/08927057241248035","DOIUrl":"https://doi.org/10.1177/08927057241248035","url":null,"abstract":"Silica-based hybrid blends at different molecular or nanometer scale have gained a lot of interests from the technological point of view. In particular, several inorganic-organic hybrids find application in the biomedical field. In this context, inorganic SiO<jats:sub>2</jats:sub> and hybrids made up of SiO<jats:sub>2</jats:sub> and polyethylene glycol (PEG) have been synthesised via the sol-gel route and characterised from the morphological (throught the Atomic Force Microscopy - AFM) and spectroscopic point of view to shed light on their features as possible hybrid biomaterials. AFM investigation allowed for an effective quantitative evaluation of surface roughness of bioactive sol-gel-based materials. The results revealed an increase in material porosity as a function of the PEG amount in the systems, thus highlighting the pivotal role of the PEG amount as compatibilizing on the morphological features of silica-based blends. The co-presence of both the inorganic and organic phases was confirmed by the Fourier-transform infrared spectroscopy (FT-IR). Moreover, the influence of PEG was also investigated by analysing the deconvoluted FT-IR spectra in the range of 1600-750 cm<jats:sup>−1</jats:sup>.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical recycling of biobased polyethylene-agave fiber composites 生物基聚乙烯-龙舌兰纤维复合材料的机械回收利用
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-16 DOI: 10.1177/08927057241248045
Sandra Esmeralda González-Aguilar, Jorge Ramón Robledo-Ortíz, Martín Arellano, Alan Salvador Martín del Campo, Denis Rodrigue, Aida Alejandra Pérez-Fonseca
{"title":"Mechanical recycling of biobased polyethylene-agave fiber composites","authors":"Sandra Esmeralda González-Aguilar, Jorge Ramón Robledo-Ortíz, Martín Arellano, Alan Salvador Martín del Campo, Denis Rodrigue, Aida Alejandra Pérez-Fonseca","doi":"10.1177/08927057241248045","DOIUrl":"https://doi.org/10.1177/08927057241248045","url":null,"abstract":"Biobased polymers have emerged as a promising alternative to petroleum-based polymers in terms of lower environmental impact. However, to improve their carbon footprint, it is important to study strategies, such as recycling, extending the useful life of these biopolymers, and mitigate their higher costs compared to petroleum-based polymers. Adding agro-industrial wastes as fillers or reinforcements is another option to reduce the cost and increase the biobased content to produce composites. This study aimed to evaluate the addition of agave fibers to biobased linear low-density polyethylene (bio-LLDPE) and their effect on its reprocessing by extrusion, i.e., close-loop mechanical recycling. The results revealed that it was possible to reprocess the bio-LLDPE alone as limited changes in their physical properties were observed up to 34 cycles. However, for the composites, the viscosity changed in the first eight cycles mainly due to fiber break-up (lower aspect ratio). The dimensions of the agave fibers are modified by reprocessing. In the initial 8 cycles, there is a notable decrease in fiber dimensions, affecting the tensile, flexural, and impact properties of the composites. The water uptake was found to decrease with each cycle due to better fiber dispersion and the reduction of interfacial voids/defects. Nevertheless, the color of the bio-LLDPE and its composites showed significant changes by reprocessing, which is associated with thermal and oxidation degradation. Despite minor property losses, the study reveals that bio-LLDPE/agave fiber composites exhibit a commendable level of sustainability. This characteristic enables their extended reuse and reprocessing over a prolonged duration.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"251 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improvement in the mechanical properties of polypropylene/ethylene-propylene-diene monomer/titanium dioxide nanocomposite obtained by fused filament fabrication 通过熔融长丝制造获得的聚丙烯/乙烯-丙烯-二烯单体/二氧化钛纳米复合材料机械性能的改善
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-12 DOI: 10.1177/08927057241245709
Lei Xu, Yu Chen, Xiang Zheng, Xuzhao Hu
{"title":"An improvement in the mechanical properties of polypropylene/ethylene-propylene-diene monomer/titanium dioxide nanocomposite obtained by fused filament fabrication","authors":"Lei Xu, Yu Chen, Xiang Zheng, Xuzhao Hu","doi":"10.1177/08927057241245709","DOIUrl":"https://doi.org/10.1177/08927057241245709","url":null,"abstract":"In the present research, the PP/EPDM/TiO<jats:sub>2</jats:sub> nanocomposite was fabricated using the fused filament fabrication process to improve the mechanical properties of the obtained samples. For this purpose, first the response surface methodology was used to investigate the effect of TiO<jats:sub>2</jats:sub> content, nozzle temperature and printing speed on the responses of tensile strength and elongation. Then, the desirability function method was applied to find the optimal condition of the process parameters. The fracture surface of the tensile samples was also studied by scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis to find a relationship between the microstructure and mechanical properties of the fabricated samples. The results indicated that the highest elongation of samples (144.9%) was attained at a TiO<jats:sub>2</jats:sub> content of 4 wt%, while the tensile strength of samples was maximized (24.6 MPa) at a TiO<jats:sub>2</jats:sub> content of 2 wt% due to fine dispersion of the nanoparticles. An increase in the nozzle temperature from 200 to 225°C led to an enhancement in the tensile strength (11.2%) and elongation (15.7%) of samples because of the good viscosity of the filament, whereas the tensile strength (6.6%) and elongation (11.1%) of samples were decreased with the increase of nozzle temperature from 225 to 250°C because of the thermal degradation of filament. Moreover, when the printing speed raised from 20 to 40 mm/s, the tensile strength initially improved by 2.7% and then decreased by 1.2%, but the elongation continuously decreased by 6.3%. Nevertheless, the concurrent enhancement of the tensile strength and elongation has been obtained at a TiO<jats:sub>2</jats:sub> content of 2.5 wt%, nozzle temperature of 227°C and printing speed of 28 mm/s.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"21 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and antibacterial of soybean protein isolate composite film with carvacrol and walnut peel extract 大豆分离蛋白与香芹酚和核桃皮提取物复合薄膜的特性和抗菌性
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-05 DOI: 10.1177/08927057241244693
Zhiyong Qin, Meiyi Zou, Kehao Fan, Yunlong Lu
{"title":"Characterization and antibacterial of soybean protein isolate composite film with carvacrol and walnut peel extract","authors":"Zhiyong Qin, Meiyi Zou, Kehao Fan, Yunlong Lu","doi":"10.1177/08927057241244693","DOIUrl":"https://doi.org/10.1177/08927057241244693","url":null,"abstract":"In order to alleviate plastic pollution and to substitute specific conventional polymer packaging, this research deployed biodegradable soy protein isolate (SPI) as a basis to create natural polymer composite films, integrating walnut peel extract (WPE) and carvacrol (CV) for their inherent antibacterial properties. The inhibition rates of the SPI/WPE5%/CV5% composite film on E.coli and S.aureus were 99.66% and 99.52%, the DPPH radical was 73.3% and ABTS radical was 95.5%. The SPI/WPE5%/CV5% composite film also exhibited excellent UV-visible barrier properties. Compared with the pure SPI film, the tensile strength of the SPI/WPE5%/CV5% composite film increased by 89.00%, the water solubility increased by 2.67%, and the water vapor permeability was reduced by 7.69%, While the water contact angle increased by 155.93%. Fourier Transform Infrared Spectroscopy studies possibly indicate that the polyphenol-proteins in the SPI/WPE/CV composite film are bound together by hydrogen bonding. X-ray Diffraction study demonstrated that the crystallinity of the SWC films increased. Scanning Electron Microscope results revealed the surface level and internal molecular structure of the SWC films. Thermal weight analysis showed that after adding WPE and CV, the thermal properties of the SWC films improved. This study explored release of the film and found that the composite film can continuously release polyphenols, which play an antibacterial and antioxidant role.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of filler surface treatment on the physico-mechanical properties of filler/styrene-butadiene rubber nanocomposites 填料表面处理对填料/丁苯橡胶纳米复合材料物理力学性能的影响
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-03 DOI: 10.1177/08927057241244708
Amir A Abdelsalam, Murat Demiral, Mohamed M Selim, Salwa H El-Sabbagh
{"title":"Effect of filler surface treatment on the physico-mechanical properties of filler/styrene-butadiene rubber nanocomposites","authors":"Amir A Abdelsalam, Murat Demiral, Mohamed M Selim, Salwa H El-Sabbagh","doi":"10.1177/08927057241244708","DOIUrl":"https://doi.org/10.1177/08927057241244708","url":null,"abstract":"In the present work, the effects of various filler types and content on the characteristics and properties of styrene-butadiene rubber (SBR) were studied. This study prepared SBR filled with different fillers: kaolin, metakaolinite, synthetic zeolite Na-A, alumina (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) nanoparticles, and hybrid filler (synthetic zeolite Na-A/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>). The silane coupling agent 3-aminopropyltriethoxysilane (APTES) was employed to treat the surface with fillers. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to determine the surface morphology. The results demonstrated that fillers improved the physicomechanical properties. Tensile strength and elongation at break (%) in composites containing synthetic zeolite Na-A increased by up to 158.6% at 3 phr and 100% at 2 phr, respectively. The results showed that the surface properties displayed by SEM analysis indicated a good distribution of filler particles. Also, the rubber compound’s resistance to organic solvents such as toluene was improved, as evidenced by swelling properties; the swelling ratio decreased by 17.5% while the crosslink density increased by 42.6% at 5 phr Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/synthetic zeolite Na-A. The constants of the various hyperelastic models that explain the behavior of the composite materials under study were determined, and their predictions of the experimentally obtained stress-strain curves were compared. The study’s experimental findings will be helpful for several industrial uses, including an extender in water-based paints, rubber fillers, ceramic materials, paper fillers, and coating pigments.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"300 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of physical compatibilization and dynamic vulcanization on the properties of thermoplastic vulcanizates derived from polypropylene and natural rubber blends 物理相容和动态硫化对聚丙烯和天然橡胶混合物热塑性硫化弹性体性能的影响
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-03 DOI: 10.1177/08927057241244697
Abderrahmane Belhaoues, Samia Benmesli
{"title":"The effect of physical compatibilization and dynamic vulcanization on the properties of thermoplastic vulcanizates derived from polypropylene and natural rubber blends","authors":"Abderrahmane Belhaoues, Samia Benmesli","doi":"10.1177/08927057241244697","DOIUrl":"https://doi.org/10.1177/08927057241244697","url":null,"abstract":"This interesting study investigated the effect of Maleic Anhydride-grafted-Polypropylene/Epoxidized Natural Rubber (PP-g-MA/ENR) as a compatibilizing agent (CA) on the properties of a 30/70 Polypropylene/Natural Rubber PP/NR blends. The effect of dynamic vulcanization with sulfur-donors (i.e.: Tetramethyl thiuram disulfide (TMTD) and 4,4 Dithiodimorpholine (DTDM)) which were used as vulcanizing agents was also reported. Several formulations of TPVs with different concentrations of CA (from 5 to 15 phr) were prepared by mixing in the molten state using a Haake Rheocord 90. The structural analysis of dual compatibilizer was examined by FTIR spectroscopy. The rheological behavior was examined using Haake Rheocord 90. The mechanical properties were determined by the tensile measurements. The dynamic mechanical thermal properties were investigated by DMA. A morphological examination was conducted using SEM Microscopy, respectively. FTIR analysis confirmed reactions between the MA group in PP-g-MA and the epoxy groups in ENR, resulting in ENR-grafted PP with an ester and acid-based linkage. The Haake plastograms revealed a proportional increase in the final mixing torque value with the increasing content of CA. The mechanical results exhibited higher values in terms of tensile strength and Young’s modulus for the TPVs containing CA compared to un-compatibilized ones. The compatibilized TPV blends exhibited a noteworthy increase in storage modulus and a notable decrease in loss tangent values with the CA concentration increased. Furthermore, the TPVs show two distinct-phase morphologies. That is, the TPV with CA showed the presence of smaller vulcanized rubber particles dispersed within the PP matrix, a phenomenon that becomes more pronounced with higher CA contents.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"47 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信