An improvement in the mechanical properties of polypropylene/ethylene-propylene-diene monomer/titanium dioxide nanocomposite obtained by fused filament fabrication

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Lei Xu, Yu Chen, Xiang Zheng, Xuzhao Hu
{"title":"An improvement in the mechanical properties of polypropylene/ethylene-propylene-diene monomer/titanium dioxide nanocomposite obtained by fused filament fabrication","authors":"Lei Xu, Yu Chen, Xiang Zheng, Xuzhao Hu","doi":"10.1177/08927057241245709","DOIUrl":null,"url":null,"abstract":"In the present research, the PP/EPDM/TiO<jats:sub>2</jats:sub> nanocomposite was fabricated using the fused filament fabrication process to improve the mechanical properties of the obtained samples. For this purpose, first the response surface methodology was used to investigate the effect of TiO<jats:sub>2</jats:sub> content, nozzle temperature and printing speed on the responses of tensile strength and elongation. Then, the desirability function method was applied to find the optimal condition of the process parameters. The fracture surface of the tensile samples was also studied by scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis to find a relationship between the microstructure and mechanical properties of the fabricated samples. The results indicated that the highest elongation of samples (144.9%) was attained at a TiO<jats:sub>2</jats:sub> content of 4 wt%, while the tensile strength of samples was maximized (24.6 MPa) at a TiO<jats:sub>2</jats:sub> content of 2 wt% due to fine dispersion of the nanoparticles. An increase in the nozzle temperature from 200 to 225°C led to an enhancement in the tensile strength (11.2%) and elongation (15.7%) of samples because of the good viscosity of the filament, whereas the tensile strength (6.6%) and elongation (11.1%) of samples were decreased with the increase of nozzle temperature from 225 to 250°C because of the thermal degradation of filament. Moreover, when the printing speed raised from 20 to 40 mm/s, the tensile strength initially improved by 2.7% and then decreased by 1.2%, but the elongation continuously decreased by 6.3%. Nevertheless, the concurrent enhancement of the tensile strength and elongation has been obtained at a TiO<jats:sub>2</jats:sub> content of 2.5 wt%, nozzle temperature of 227°C and printing speed of 28 mm/s.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"21 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241245709","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present research, the PP/EPDM/TiO2 nanocomposite was fabricated using the fused filament fabrication process to improve the mechanical properties of the obtained samples. For this purpose, first the response surface methodology was used to investigate the effect of TiO2 content, nozzle temperature and printing speed on the responses of tensile strength and elongation. Then, the desirability function method was applied to find the optimal condition of the process parameters. The fracture surface of the tensile samples was also studied by scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis to find a relationship between the microstructure and mechanical properties of the fabricated samples. The results indicated that the highest elongation of samples (144.9%) was attained at a TiO2 content of 4 wt%, while the tensile strength of samples was maximized (24.6 MPa) at a TiO2 content of 2 wt% due to fine dispersion of the nanoparticles. An increase in the nozzle temperature from 200 to 225°C led to an enhancement in the tensile strength (11.2%) and elongation (15.7%) of samples because of the good viscosity of the filament, whereas the tensile strength (6.6%) and elongation (11.1%) of samples were decreased with the increase of nozzle temperature from 225 to 250°C because of the thermal degradation of filament. Moreover, when the printing speed raised from 20 to 40 mm/s, the tensile strength initially improved by 2.7% and then decreased by 1.2%, but the elongation continuously decreased by 6.3%. Nevertheless, the concurrent enhancement of the tensile strength and elongation has been obtained at a TiO2 content of 2.5 wt%, nozzle temperature of 227°C and printing speed of 28 mm/s.
通过熔融长丝制造获得的聚丙烯/乙烯-丙烯-二烯单体/二氧化钛纳米复合材料机械性能的改善
在本研究中,采用熔融长丝制造工艺制造了 PP/EPDM/TiO2 纳米复合材料,以改善所得样品的机械性能。为此,首先使用响应面方法研究了 TiO2 含量、喷嘴温度和印刷速度对拉伸强度和伸长率响应的影响。然后,应用可取函数法找出工艺参数的最佳条件。此外,还通过扫描电子显微镜、差示扫描量热仪和热重分析对拉伸样品的断裂面进行了研究,以找出制备样品的微观结构与机械性能之间的关系。结果表明,TiO2 含量为 4 wt% 时,样品的伸长率最高(144.9%),而由于纳米粒子的精细分散,TiO2 含量为 2 wt% 时,样品的拉伸强度最大(24.6 兆帕)。将喷嘴温度从 200°C 提高到 225°C,由于长丝具有良好的粘度,样品的拉伸强度(11.2%)和伸长率(15.7%)均有所提高;而将喷嘴温度从 225°C 提高到 250°C,由于长丝的热降解,样品的拉伸强度(6.6%)和伸长率(11.1%)均有所下降。此外,当打印速度从 20 毫米/秒提高到 40 毫米/秒时,拉伸强度最初提高了 2.7%,随后降低了 1.2%,但伸长率持续降低了 6.3%。然而,在二氧化钛含量为 2.5 wt%、喷嘴温度为 227°C 和印刷速度为 28 mm/s 时,拉伸强度和伸长率同时得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信