Journal of Thermoplastic Composite Materials最新文献

筛选
英文 中文
Fabrication of co-continuous morphology of polysulfone/nylon 6, 6 nanocomposites by varying the concentration of organically modified clay content 通过改变有机改性粘土含量的浓度制备聚砜/尼龙 6,6 纳米复合材料的共连续形貌
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-30 DOI: 10.1177/08927057241270907
Tanmoy Rath, Ibrahim A Alnaser, Asiful H Seikh
{"title":"Fabrication of co-continuous morphology of polysulfone/nylon 6, 6 nanocomposites by varying the concentration of organically modified clay content","authors":"Tanmoy Rath, Ibrahim A Alnaser, Asiful H Seikh","doi":"10.1177/08927057241270907","DOIUrl":"https://doi.org/10.1177/08927057241270907","url":null,"abstract":"A unique morphology was fabricated using melt mixing of polysulfone (PSU) and nylon 6, 6, as well as organically modified clay to produce two blended nanocomposite compositions (80/20 and 60/40 w/w) of polysulfone and nylon 6, 6. The morphology of PSU/Nylon 6, 6 blend nanocomposites with various amounts of clay has been examined using scanning electron microscope (SEM), transmission electron microscope (TEM), and wide-angle X-ray diffraction (WAXD). In the case of 80/20 (w/w) PSU/Nylon 6, 6 without clay, the Nylon 6, 6 is dispersed in the PSU matrix with an average particle size of about 6.81 micrometers (μm). After adding clay (2%, 4%, and 8%), the domain size of nylon 6, 6 decreases, although the decrease rate is much slower than initially observed. However, we discovered that when the organoclay level exceeds 2%, the matrix-domain structure transforms into a co-continuous morphology for the 60/40 (w/w) blends. The TEM studies clearly demonstrate that the organoclay preferentially positions itself in the nylon 6, 6 phase, exhibiting a high degree of exfoliation, while the PSU phase of the nanocomposites remains devoid of clay, irrespective of the amount present. This study indicates that the size of clay platelets dispersed in the PSU/Nylon 6, 6 blend plays an important role in determining the morphology and stability of these blends. Moreover, the co-continuous structures were stable against further annealing at high temperatures, thus inhibiting the coalescence of the dispersed phase in addition to reducing interfacial tension.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"33 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on different leaf fiber loading on PLA polymer matrix composite 全面评述聚乳酸聚合物基复合材料上的不同叶片纤维负载
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-26 DOI: 10.1177/08927057241268832
Dibya P Sethy, Swarnalata Sahoo
{"title":"A comprehensive review on different leaf fiber loading on PLA polymer matrix composite","authors":"Dibya P Sethy, Swarnalata Sahoo","doi":"10.1177/08927057241268832","DOIUrl":"https://doi.org/10.1177/08927057241268832","url":null,"abstract":"Bio-sourced plastics are most widely essence among all potential materials to replace fossil based plastics which have many unfavorable impacts to the environment like global warming, land pollution, water pollution and global warming etc. Fossil based polymers that is polypropylene are mainly non biodegradable in nature and that tends to cause pollution on the earth surface and causes different harmful diseases if we do not provide proper disposal to waste polymers. To keep eye on that, this review paper focused on the replacement fossil based polymer with introducing biopolymer Polylatic Acid (PLA) polymer matrix composite with the incorporation of different leaf fiber. The intention of the current review is to represent the detailed idea for the development of PLA polymer matrix composite with the incorporation of different leaf fiber and with the proper selection compatibilizer to enhance the mechanical, degradation and other properties. Among these, leaves, once relegated to the realms of waste, have risen as potent contributors to the realm of fiber composites. The spotlight of exploration falls on green composites reinforced with leaf fibers, showcasing mechanical properties and modulus that surpass other classes of polymer composites. This revelation not only reshapes our understanding of plant-based fibers but also propels them into the forefront of innovation across industries. The modified composite can be used as various packaging materials in different areas like in textile industry, medicine and drug packaging, food industry for food packaging etc. This overview will support the researchers to engage in the development of degradation capability with enhancing mechanical properties of bio-sourced materials as composite materials. In essence, this review not only describes the essence of leaf fiber based composites but also acts as a main role for a greener, more sustainable future. It deliberates the necessity of leaves, transforming them from waste into a usable product thereby producing more strength in composite materials.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"16 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape memory behaviour of nanoparticle reinforced trans-1,4-polyisoprene and polystyrene nanocomposites—Aspects and advancements 纳米粒子增强反式-1,4-聚异戊二烯和聚苯乙烯纳米复合材料的形状记忆特性--前景与进展
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-20 DOI: 10.1177/08927057241265326
Ayesha Kausar
{"title":"Shape memory behaviour of nanoparticle reinforced trans-1,4-polyisoprene and polystyrene nanocomposites—Aspects and advancements","authors":"Ayesha Kausar","doi":"10.1177/08927057241265326","DOIUrl":"https://doi.org/10.1177/08927057241265326","url":null,"abstract":"Trans-1,4-polyisoprene (a thermoplastic crystalline polymer) and polystyrene (an amorphous or semicrystalline polymer) have been frequently used as important matrix materials for the formation of nanocomposites. Trans-1,4-polyisoprene has crystallinity and toughness properties, whereas polystyrene has transparent and brittle nature. These matrices have revealed shape memory effects through the inclusion of carbon nanoparticles like graphene and carbon nanotube, as well as inorganic nanoparticles like titania, silica, and metal nanoparticles. The nanoparticle addition has been found to induce shape changes as well as microstructural and physical property alterations in the matrices. This state-of-the art review article reports on the stimuli responsiveness of important categories of trans-1,4-polyisoprene and polystyrene based nanocomposites. These nanomaterials revealed important thermal, electric, and radiation induced responses. High performance shape memory effects have been observed depending upon the nanoparticle type, contents, and interactions with the polymer network. With the carbon nanoparticles like carbon nanotube, graphene, or carbon black, trans-1,4-polyisoprene revealed high shape recovery responses of 95%–99%. The nanocomposites of copolymers or blends of trans-1,4-polyisoprene also depicted the shape recovery of up to 100%. The shape memory nanocomposites of polystyrene and its blends and copolymers with different types of nanoparticles exhibited effective thermo responsive and electro active shape memory behavior. Consequently, the effective shape memory effects have been attributed to the homogeneous nanoparticle dispersion as well as the network formation for an active polymer chain switching.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"41 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent packaging films based on two-dimensional nanomaterials for food safety and quality monitoring: Future insights and roadblocks 基于二维纳米材料的智能包装膜用于食品安全和质量监测:未来展望与发展障碍
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-20 DOI: 10.1177/08927057241264802
Hesham Moustafa, Mohamed H Hemida, Mohamed A Nour, Ahmed I Abou-Kandil
{"title":"Intelligent packaging films based on two-dimensional nanomaterials for food safety and quality monitoring: Future insights and roadblocks","authors":"Hesham Moustafa, Mohamed H Hemida, Mohamed A Nour, Ahmed I Abou-Kandil","doi":"10.1177/08927057241264802","DOIUrl":"https://doi.org/10.1177/08927057241264802","url":null,"abstract":"More than 1.3 billion tons of foodstuffs are wasted each year because of their storage, handling, transportation or sale, resulting in the world suffering from famine and food shortages. This means that huge amounts of the resources utilized in food production are wasted. Greenhouse gas emissions caused by food degradation that gets wasted results in serious environmental and human health impacts. Food losses could be caused by microbes, temperature, humidity, UV-lights, or other factors related to the current pandemics, that have serious jeopardy impacts on the food security and the environment. Thus, smart packaging-based 2D-nanomaterials (2DMs) including sensors and pH-responsive tags have developed for achieving the quality and prolong the shelf-life of foodstuffs. Because they are capable to detect, sense, record internal or external changes in the product’s area. They also can give a prompt message or color changing to the producer or consumer to decide about the shelf lives and expiration dates for consuming the foodstuffs without deteriorating food and packaging. This study reviews the recent advancements in 2DMs regarding preparation, characterization, and applications including active/intelligent food packaging industries. Facile and green functionalization of 2DMs-based graphene oxide (GO) by folic acid or natural dyes enabling them be used in several sensor/artificial intelligence disciplines are discussed. Future insights on the challenges towards the potential outbreak prevention in foodstuffs and their control in long-term use and risk management of these materials are also discussed.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"54 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using carbon fiber tape to tailor the coefficient of thermal expansion in 3D-Printed composite tooling 使用碳纤维带调整 3D 打印复合材料模具的热膨胀系数
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-18 DOI: 10.1177/08927057241264475
Matthias Feuchtgruber, John Holmes, Silvano Sommacal, Maximilian Strobel, Florian Gehringer, Patrick Consul, Dennis Bublitz, Jasper Weghorst, Robert Thomson, Frank Strachauer, Paul Compston, Klaus Drechsler
{"title":"Using carbon fiber tape to tailor the coefficient of thermal expansion in 3D-Printed composite tooling","authors":"Matthias Feuchtgruber, John Holmes, Silvano Sommacal, Maximilian Strobel, Florian Gehringer, Patrick Consul, Dennis Bublitz, Jasper Weghorst, Robert Thomson, Frank Strachauer, Paul Compston, Klaus Drechsler","doi":"10.1177/08927057241264475","DOIUrl":"https://doi.org/10.1177/08927057241264475","url":null,"abstract":"In this work, we investigated the effect of plain woven carbon fiber tape embedded in each layer of an additively manufactured part on the coefficient of thermal expansion (CTE) and compared it to conventionally printed parts. Current advancements in Additive Manufacturing enable cost-efficient 3D printing of composite tools. However, these tools do not yet offer a low CTE comparable to Invar, necessary for producing aerospace-quality composite parts. Using the novel Advanced Tape Layer Additive Manufacturing process, the tape is placed on top of the bead immediately after extruding the short fiber-reinforced material. The samples are compared to Material Extrusion specimens from a Large Format Additive Manufacturing System. A lower CTE was achieved within the printing plane. Micro-computed tomography images correlate the preferential orientation of short fibers with measured CTE values. The CTE modification can match the part CTE to the tool CTE and therefore optimize the quality of manufactured parts.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"17 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental study on filling of gaps and void pockets during vacuum-bag-only consolidation of fiber placed preforms 关于仅用真空袋固结纤维预成型件过程中填充间隙和空隙的实验研究
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-07-18 DOI: 10.1177/08927057241259745
Jagadeesh N Swamy, Wouter JB Grouve, Sebastiaan Wijskamp, Remko Akkerman
{"title":"An experimental study on filling of gaps and void pockets during vacuum-bag-only consolidation of fiber placed preforms","authors":"Jagadeesh N Swamy, Wouter JB Grouve, Sebastiaan Wijskamp, Remko Akkerman","doi":"10.1177/08927057241259745","DOIUrl":"https://doi.org/10.1177/08927057241259745","url":null,"abstract":"Gaps and void pockets are inevitably present in tailored thermoplastic composite preforms manufactured via automated fiber placement (AFP). Filling these gaps and voids can be challenging during the consolidation due to the high viscosity of thermoplastic composites, especially in the case of vacuum-bag-only (VBO) consolidation, where the applied pressure is limited. Therefore, the current work investigates whether one bar pressure is sufficient to fill the gaps and voids during VBO consolidation. For this purpose, two experiments are performed. First, a hot plate setup is built and used to capture the real-time gap-filling behavior during the VBO consolidation. Second, VBO consolidation of tailored preforms is performed to study the filling of ply-drop induced void pockets. Here, the tailored preform consists of plies of different orientations dropped at different locations to verify if one bar pressure available during the VBO process is sufficient to fill the void pockets. The results from both experiments answered the main question that one bar pressure is sufficient for filling the gaps and void pockets for the given material systems, and further, it was confirmed that the transverse squeeze flow was dominant in filling gaps. However, in the case of fillings of ply-drop induced void pockets, the orientation of the dropped ply and covering plies majorly dictated the filling behavior.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"68 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental evaluation and optimization of parameters affecting delamination, geometrical tolerance and surface roughness in ultrasonic drilling of 3D-Printed PLA thermoplastic 对三维打印聚乳酸热塑性塑料超声波钻孔中影响分层、几何公差和表面粗糙度的参数进行实验评估和优化
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-06-24 DOI: 10.1177/08927057241264803
Mohammad Baraheni, Mohammad Reza Shabgard, Saeid Amini, Farid Gholipour
{"title":"Experimental evaluation and optimization of parameters affecting delamination, geometrical tolerance and surface roughness in ultrasonic drilling of 3D-Printed PLA thermoplastic","authors":"Mohammad Baraheni, Mohammad Reza Shabgard, Saeid Amini, Farid Gholipour","doi":"10.1177/08927057241264803","DOIUrl":"https://doi.org/10.1177/08927057241264803","url":null,"abstract":"Ultrasonic drilling is a suitable process to enhance the generated surfaces by additive manufacturing. In this study, polylactic acid was selected as the workpiece. The examination parameters were thrust force, delamination, geometrical tolerance, chip adhesion, hole wall morphology and surface roughness. It was explained that the harmonic movement of drill bit in ultrasonic drilling reduced thrust force, delamination, circularity, cylindricality and surface roughness up to 14.5%, 3.7%, 44%, 38%, 20% respectively and removed chip adhesion. Furthermore, number of end-mill flutes was examined and observed that 4-flutes compared to 2-flutes induced reduction in thrust force, delamination, circularity, cylindricality and surface roughness up to 15.2%, 2%, 7.5%, 18.9%, 12.5% respectively. Besides, analysis of variance was established to determine the significant parameters. Finally, non-dominated sorting genetic algorithm-II technique was implemented in order to carry out multi-response optimization.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"35 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative hybrid nanocomposites of recycled polyethylene terephthalate/polyamide 11 reinforced with sepiolite and graphene nanoplatelets 用海泡石和石墨烯纳米片增强回收聚对苯二甲酸乙二酯/聚酰胺 11 的创新型混合纳米复合材料
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-06-20 DOI: 10.1177/08927057241264457
Zahid Iqbal Khan, Unsia Habib, Zurina Binti Mohamad, Arbab Tufail, Abdulwasiu Muhammed Raji, Asmat Ullah Khan
{"title":"Innovative hybrid nanocomposites of recycled polyethylene terephthalate/polyamide 11 reinforced with sepiolite and graphene nanoplatelets","authors":"Zahid Iqbal Khan, Unsia Habib, Zurina Binti Mohamad, Arbab Tufail, Abdulwasiu Muhammed Raji, Asmat Ullah Khan","doi":"10.1177/08927057241264457","DOIUrl":"https://doi.org/10.1177/08927057241264457","url":null,"abstract":"This research delves into the novel development of hybrid nanocomposites using recycled polyethylene terephthalate (rPET)/polyamide (PA11) with sepiolite, enhanced by the integration of Graphene Nanoplatelets (GNP). Five different formulations were produced using co-rotating twin-screw extrusion and injection moulding techniques. The optimal blend, which includes equal amounts of sepiolite and graphene nanoplatelets (phr, 1 part per hundred resin each), exhibited a tensile strength of 54.5 MPa, representing an increase in tensile strength by 46.5% and an increase in percent strain by 59% as the GNP content increased from 0.2 to 1 phr, replacing sepiolite. Young’s modulus of hybrid nanocomposites varied between 1020 and 1285 MPa, indicating a significant enhancement. Flexural strength in the best-performing hybrid nanocomposite containing 1 phr of sepiolite and 1 phr of GNP (HNC-G1.0) increased by 61.65% to 76.46 MPa from 47.3 MPa (HNC-G0.0). In contrast, its flexural modulus reached 2668 MPa from HNC-G0.0 (1730 MPa), demonstrating substantial improvements. The impact strength also showed a notable 83% rise from HNC-G0.0 (252.97 J/m) to 463.18 J/m (HNC-G1.0). Despite these mechanical enhancements, Thermo Gravimetric Analysis (TGA) demonstrated the thermal stability of the nanocomposites. At the same time, Differential Scanning Calorimetry (DSC) confirmed that the melting temperature remained stable, ensuring consistent processing conditions. This innovative research paves the way for advanced applications of rPET, particularly in the automotive industry. It marks a significant advancement in polymer science, promoting sustainable solutions and high-performance hybrid nanocomposites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"22 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ interlaminar shear behavior of carbon fibers reinforced polymer composites exposed to severe thermal aggressions: PPS versus epoxy laminates 碳纤维增强聚合物复合材料在严重热侵蚀下的原位层间剪切行为:PPS 与环氧树脂层压板的对比
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-05-29 DOI: 10.1177/08927057241256941
B. Vieille, A. Coppalle
{"title":"In situ interlaminar shear behavior of carbon fibers reinforced polymer composites exposed to severe thermal aggressions: PPS versus epoxy laminates","authors":"B. Vieille, A. Coppalle","doi":"10.1177/08927057241256941","DOIUrl":"https://doi.org/10.1177/08927057241256941","url":null,"abstract":"This study investigates the influence of a combined thermal heat flux and a flexural loading on the interlaminar shear behavior of quasi-isotropic carbon fibers reinforced PPS and Epoxy laminates. Regardless the intensity of the heat flux (ranging from 20 to 50 kW/m<jats:sup>2</jats:sup>), the maximum surface temperature is higher than the onset of thermal decomposition [Formula: see text] in C/Epoxy laminates ([Formula: see text]) whereas the thermal decomposition is reached only for 40-50 kW/m<jats:sup>2</jats:sup> heat fluxes in C/PPS laminates ([Formula: see text]). A mechanical bench was specifically designed to study the interlaminar shear behavior of polymer-based laminates during the thermal aggression (imposed by a cone calorimeter). In C/PPS laminates, with respect to the reference values (as received state), the flexural modulus and the apparent ILSS (under 50 kW/m<jats:sup>2</jats:sup>) decreases by about 80%. In C/Epoxy laminates, with respect to the reference values (as received or virgin state), the flexural modulus and the apparent ILSS (under 50 kW/m<jats:sup>2</jats:sup>) decreases by about 20% and 50%, respectively. In carbon fiber-reinforced polymer materials, the matrix state is crucial for preserving the cohesion of the fibers network and the bonding of the plies together, a role that seems compromised in C/Epoxy and C/PPS laminates under high heat flux conditions, once the pyrolysis of the matrix has severely degraded the interlaminar properties of the material.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"21 1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of 3D printed polylactic acid and polylactic acid – hydroxyapatite composite through material extrusion technique for biomedical application 通过材料挤压技术三维打印聚乳酸和聚乳酸-羟基磷灰石复合材料用于生物医学应用的实验研究
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-05-28 DOI: 10.1177/08927057241255883
Vijayvignesh Namasivayam Sukumaar, Siddharthan Arjunan, Lakshmi Narayanan Pandiaraj, Arunagiri Narayanan
{"title":"Experimental investigation of 3D printed polylactic acid and polylactic acid – hydroxyapatite composite through material extrusion technique for biomedical application","authors":"Vijayvignesh Namasivayam Sukumaar, Siddharthan Arjunan, Lakshmi Narayanan Pandiaraj, Arunagiri Narayanan","doi":"10.1177/08927057241255883","DOIUrl":"https://doi.org/10.1177/08927057241255883","url":null,"abstract":"In biomedical industries, composite additive manufacturing are employed for customization, quicker production, efficient use and capital reduction. This experimental work focuses on the development of poly lactic acid (PLA) and novel extruded hydroxyapatite (HA) reinforced poly lactic acid (HPLA) by material extrusion (ME) technique and their properties were compared with that of standard 3D printed PLA. The extruded composite filaments were subjected to thermal characterization (DSC, TGA) and chemical characterization (FTIR) to ensure filament quality and its implementation in ME technique for 3D printing process. In addition, the melt compounded composite filaments were subjected to annealing to observe the influence of heat treatment upon their mechanical properties and thereby to validate their potential to resist breakage during ME process. Taguchi orthogonal array method using MiniTab software is employed to execute the parameter optimization for the 3D printing process. The 3D printed tensile, flexural and impact specimens, using pure PLA and extruded composite filaments, as per American Society for Testing and Materials (ASTM) standards were subjected to a comparative experimental study which showed that 3D printed specimens using PLA and HPLA performed better than that of standard PLA specimens due to the improvement in their crystalline nature. The ruptured specimens were subjected to microstructural characterization (optical microscopy, SEM) to observe failure modes and ash content test was conducted to validate the homogenous distribution HA filler particles in PLA matrix. In addition, mechanical characterization was also performed on 3D printed bone plate/bone scaffold application using extruded filaments of PLA and HPLA, as per ASTM F543 standards, to validate incorporation of the composite filaments in real-time application in biomedical industry.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"61 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信