Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi
{"title":"Bio-Based Materials for Electrochemical Detection of Bisphenol A","authors":"Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi","doi":"10.1149/1945-7111/ad6eb8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6eb8","url":null,"abstract":"Bisphenol A is a widely used endocrine disruptor known for its toxicity and prevalence in the environment. It contaminates drinking water, especially when plastic bottles are exposed to Sunlight. Rapid, on-site detection of BPA in drinking water is crucial for protecting human health and the environment. Herein, we developed an electrochemical sensor for detecting and monitoring bisphenol A in water bodies utilizing biobased materials. The device uses a biopolymeric membrane with agarose and gelified green tea tannins (GT/Agar). A sensitive part was made using this natural composite due to its high ability to attach bisphenol A to tannin monomers. Green tea tannins were purified and characterized through HPLC, FTIR, SEM, and AFM. The electrochemical activity of the GT-Agar/Au sensor is also evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, square wave voltammetry and scan rate. Based on its redox signal under the optimal experimental conditions, this sensor has a detection range of 10<sup>−16 </sup>M to 10<sup>−4 </sup>M, a limit of detection of 1.52 to 10<sup>−17 </sup>M and very high selectivity. The proposed sensor successfully determined BPA levels from ultra-trace concentrations in bottled water samples, achieving satisfactory recovery rates. Compared to the results obtained using HPLC, it demonstrates high reliability.<inline-formula>\u0000<inline-graphic xlink:href=\"jesad6eb8-ga.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"99 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Alberto Barreras-Uruchurtu, Nicolas Besnard, Clément Paul, Lauréline Marchal, Samuel Devisme and Bernard Lestriez
{"title":"Effect of PVdF Distribution on Properties and Performance of Dry Spray-Coated Graphite Electrodes for Lithium-Ion Batteries for Electric Vehicle Applications","authors":"J. Alberto Barreras-Uruchurtu, Nicolas Besnard, Clément Paul, Lauréline Marchal, Samuel Devisme and Bernard Lestriez","doi":"10.1149/1945-7111/ad6936","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6936","url":null,"abstract":"We used electrostatic dry spray-coating to fabricate graphite/PVdF anodes. We compared the morphological, mechanical, electrical, and electrochemical properties of electrodes fabricated with three different mixing times of dry electrode components. Quantitative and novel relationships between the PVdF distribution and the electrode properties were obtained. Our investigations suggest that our fabrication methods are viable alternatives for producing electrodes with comparable properties to those fabricated using traditional wet solvent-based methods. Overall, our work provides insights into new and promising methods for fabricating high-quality dry-sprayed electrodes (DSEs) with high mass loadings for use in a variety of electrochemical applications such as electric vehicles.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"10 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macgregor F. Macintosh, Mohsen Shakouri and M. N. Obrovac
{"title":"Isovalent Co-Substitution of Iron and Titanium into Single-Crystal NMC622","authors":"Macgregor F. Macintosh, Mohsen Shakouri and M. N. Obrovac","doi":"10.1149/1945-7111/ad68e4","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68e4","url":null,"abstract":"Substitutional Li[Ni0.6Mn0.2Co0.2]O2 oxides (known as NMC622) were made by all-dry synthesis with Fe and Ti substituting Co and Mn, respectively. The substitutions were performed in three series, Fe substitution for Co, Ti substitution for Mn, and Fe and Ti co-substitution for Co and Mn, according to the formula Li(Ni0.6Mn0.2−yCo0.2−xFexTiy)O2. The resulting oxides were evaluated as cathode materials for Li-ion batteries. Fe-substitution for Co resulted in increased intersite mixing, resulting in increased polarization and capacity fade. Ti-substitution for Mn also resulted in increased intersite mixing, but the mixing was due to Ti3+ in the Li-layer. As a result, Ti-substituted NMCs had improved capacity retention and reduced polarization. These effects were independent of each other, so that Ti could partially offset the negative aspects of Fe-substitution. Additionally, layered Mn-free Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) was produced as an endmember of this series for the first time with low intersite mixing and superior electrochemical performance in comparison to previous reports. These results demonstrate benefits of all-dry Ti-substitution in NMC and the all-dry synthesis method as an avenue towards new cathode composition discovery.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"373 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Possible Role of Thermite Reactions in Thermal Runaway of Li-ion Cells with Layered Cathodes","authors":"Rodney LaFollette and Michael D. Eskra","doi":"10.1149/1945-7111/ad6939","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6939","url":null,"abstract":"It is often observed that some runaway Li-ion cells with layered cathode materials become much hotter internally than existing thermal runaway models predict. Further, metals originally in the positive active material (such as Co, Ni, and Mn) are often found in cells whose temperatures became very high. It has been postulated that the formation of metals can be attributed to reduction of rock salt species (MO, where M is the metal), or the reaction of lithiated active material (LiMO2) with CO2. We propose an alternate process for formation of metals that also results in very high cell temperatures, namely thermite reactions between the Al positive electrode current collector and the positive active material. These reactions are highly exothermic, in contrast with the reactions of MO and LiMO2 mentioned. In this paper the thermodynamics of thermite reactions are presented. Incorporating thermite reactions in runaway models will likely improve temperature prediction of Li-ion cells in thermal runaway.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"26 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capacity and Resistance Diagnosis of Batteries with Voltage-Controlled Models","authors":"Wolfgang G. Bessler","doi":"10.1149/1945-7111/ad6938","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6938","url":null,"abstract":"Capacity and internal resistance are key properties of batteries determining energy content and power capability. We present a novel algorithm for estimating the absolute values of capacity and internal resistance from voltage and current data. The algorithm is based on voltage-controlled models. Experimentally-measured voltage is used as an input variable to an equivalent circuit model. The simulation gives current as output, which is compared to the experimentally-measured current. We show that capacity loss and resistance increase lead to characteristic fingerprints in the current output of the simulation. In order to exploit these fingerprints, a theory is developed for calculating capacity and resistance from the difference between simulated and measured current. The findings are cast into an algorithm for operando diagnosis of batteries operated with arbitrary load profiles. The algorithm is demonstrated using cycling data from lithium-ion pouch cells operated on full cycles, shallow cycles, and dynamic cycles typical for electric vehicles. Capacity and internal resistance of a “fresh” cell was estimated with high accuracy (mean absolute errors of 0.9% and 1.8%, respectively). For an “aged” cell, the algorithm required adaptation of the model’s open-circuit voltage curve to obtain high accuracies. Highlights Operando diagnosis of capacity and internal resistance of rechargeable batteries. Novel algorithm developed, validated and demonstrated. Use of voltage-controlled models: Voltage as input, current as output. High accuracy achieved for dynamic operation of an NMC-LMO/graphite pouch cell.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"16 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian Knorr, Jiahao Li, Maximilian Schamel, Thomas Kufner, Alexander Adam and Michael A. Danzer
{"title":"Active Material Lithiation in Gr/SiOx Blend Anodes at Increased C-Rates","authors":"Julian Knorr, Jiahao Li, Maximilian Schamel, Thomas Kufner, Alexander Adam and Michael A. Danzer","doi":"10.1149/1945-7111/ad68a9","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68a9","url":null,"abstract":"The energy density of lithium-ion batteries can be improved by adding silicon as a secondary active anode material alongside graphite. However, accurate state estimation of batteries with blend electrodes requires detailed knowledge of the interplay between the active materials during lithiation. Challenges arise from the current split between the active materials and the overlap of their working potentials. This study examines the lithiation behavior of blend anodes using a setup consisting of a pure graphite and a pure SiOx half-cell connected in parallel. The setup allows for current measurements of both active materials, the determination of the state of lithiation throughout the entire charging process and measurements of balancing effects between the active materials during relaxation periods. Analysis of the behavior at increased charge rates results in greater SiOx lithiation after similar charge throughput indicating better kinetics for SiOx compared to graphite. A Doyle-Fuller-Newman model of a blend anode is used to further investigate the experimental findings on the lithiation behavior and transfer them to blend electrodes. Simulation-based variations of the silicon content show that an increased SiOx content in blend anodes leads to improved rate capability.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"70 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timon Scharmann, Canel Özcelikman, Do Minh Nguyen, Carina Amata Heck, Christian Wacker, Peter Michalowski, Arno Kwade and Klaus Dröder
{"title":"Atmospheric Influences on Li6PS5Cl Separators and the Resulting Ionic Conductivity for All-Solid-State Batteries","authors":"Timon Scharmann, Canel Özcelikman, Do Minh Nguyen, Carina Amata Heck, Christian Wacker, Peter Michalowski, Arno Kwade and Klaus Dröder","doi":"10.1149/1945-7111/ad68a8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68a8","url":null,"abstract":"All-solid-state batteries (ASSBs), defined through a solid electrolyte, are emerging as a promising solution to address current challenges in energy and power density demands for electromobility. Within the various possible types of solid electrolytes, sulfide-based materials exhibit advantageous high ionic conductivities. However, due to the strong reactivity of sulfides, atmospheric exposure can lead to the formation of toxic hydrogen sulfide and additionally negatively impact the resulting battery performance. Both factors present key challenges for ASSB production, as they necessitate the development of a material-adapted, economically viable and safe process atmosphere. In the present study, the influence of different production atmospheres on sulfide-based solid electrolytes is experimentally investigated. For this purpose, sulfide sheets are exposed to defined atmospheres with dynamic air fluctuations at dew points ranging from −60 °C to 0 °C. The resulting ionic conductivities indicate a dependency on the prevailing dew point and exposure time with a discernible impact on performance even at dew points of −60 °C within atmospheres with constant air circulation. With the acquired results, a detailed and knowledge-based selection and design of dry room production atmospheres for ASSB cell assembly is possible, which is a necessary step for further industrialization.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"70 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning of Band Gap of Cathode Li2NiPO4F by Replacing P to Nb and Forming Li2NiNbO4F for Application as 5 V Cathode in Lithium Ion Battery: A Density Functional Theory Study","authors":"Shamik Chakrabarti and A. K. Thakur","doi":"10.1149/1945-7111/ad69c8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad69c8","url":null,"abstract":"Electrochemical properties of Li2NiPO4F were studied using density functional theory. The obtained voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density are achieved as 5.33 V, 4.0 eV, 287.3 mAh g−1 and 1531.31 Wh kg−1, respectively. Although, the electrochemical properties of Li2NiPO4F are promising, large electronic band gap would certainly pose a limitation for its commercial application. Nb is a transition metal and its electronegativity is 1.6 which is less than the electronegativity of 2.19 for P. This implies, less operating voltage would be obtained if we replace P in Li2NiPO4F by Nb to form Li2NiNbO4F. However, electronic configuration of Nb is [Kr] 4d45 s1 and the valance state of Nb in Li2NiNbO4F is +5, which in turn specify that, localized Nb d states will reside in conduction band of Li2NiNbO4F and hence the electronic band-gap would be less owing to this localized Nb-d states. Our speculation gets verified by the calculated properties of Li2NiNbO4F obtained through DFT as follows; Voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density achieved, respectively, are 5.01 V, 3.64 eV (less than LiFePO4), 215.71 mAh g−1, 1080.71 Wh kg−1. Lower electronic band gap of Li2NiNbO4F makes it an alternative to Li2NiPO4F.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"23 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divya Rathore, Harold Smith Perez, Ian Monchesky, Fanny Vain, Penghao Xiao, Chongyin Yang and J. R. Dahn
{"title":"Substituting Na for Excess Li in Li1+x(Ni0.6Mn0.4)1−xO2 Materials","authors":"Divya Rathore, Harold Smith Perez, Ian Monchesky, Fanny Vain, Penghao Xiao, Chongyin Yang and J. R. Dahn","doi":"10.1149/1945-7111/ad6937","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6937","url":null,"abstract":"NMC640, a series of Li1+x(Ni0.6Mn0.4)1−xO2 materials, are important Co-free mid-Ni cathode materials for Li-ion batteries, offering high energy density and better cost-efficiency than Ni-rich counterparts. These materials require excess Li compared to stoichiometric composition to improve the electrochemical performance in terms of rate capability and cycling stability. Although lithium-to-transition metal ratios up to 1.15 can be used to optimize the performance, less than 80% of this lithium is electrochemically active during cycling up to a 4.4 V upper cut off. This study explores whether some percentage of the inactive Li can be replaced by sodium to make these materials more cost-effective and bring potential improvements in electrochemical performance. Various amounts of excess Li were substituted by sodium in the structure. The results show that sodium can be integrated into the layered oxide structure without forming any impurity phases and effectively decreases the cation mixing observed in these layered structures. However, this does compromise cycling stability and rate capability. Na tends to occupy Li sites rather than transition metal sites, resulting in electrochemical instability and capacity loss. Even though excess Li is not electrochemically active, it cannot be effectively replaced by sodium without compromising battery performance of Li1+x(Ni0.6Mn0.4)1−xO2 materials.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"57 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei He, Munaiah Yeddala, Leah Rynearson and Brett Lucht
{"title":"Electrolyte Design for NMC811||SiOx-Gr Lithium-Ion Batteries with Excellent Low-Temperature and High-Rate Performance","authors":"Wei He, Munaiah Yeddala, Leah Rynearson and Brett Lucht","doi":"10.1149/1945-7111/ad6934","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6934","url":null,"abstract":"The use of high-nickel NMC811 cathode and SiOx-Gr anode can greatly improve the overall energy densities of lithium-ion batteries. However, the unfavorable solid electrolyte interphase (SEI) layer generated from the decomposition of EC-based electrolytes lead to the poor cycling stability of NMC811||SiOx-Gr cells. Here we report an electrolyte design of 1.5 M LiPF6 dissolved in FEC/MA/BN 2:2:6 by volume, which can form thin, robust, and homogeneous SEI layer to greatly improve the charge transfer at the electrode-electrolyte interface. Importantly, the designed electrolyte shows an outstanding low temperature performance that it can deliver a capacity of 123.3 mAh g–1 after 50 cycles at −20 °C with a current density of 0.5 C, overwhelming the standard EC-based electrolyte (1.2 M LiPF6 EC/EMC 3:7 by volume) with a capacity of 35.7 mAh g–1. The electrolyte also has a superior rate performance that it achieves a capacity of 122.5 mAh g−1 at a high current density of 10 C. Moreover, the LTE electrolyte holds the great potential of extreme fast-charging ability because of the large part of CC contribution in the CCCV charging model at high charging current densities.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"373 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}