Journal of The Electrochemical Society最新文献

筛选
英文 中文
Review—Advances in Rechargeable Lithium-Ion Batteries Utilizing Polyoxometalate-Functionalized Nanocarbon Materials 综述--利用聚氧化金属功能化纳米碳材料的可充电锂离子电池的研究进展
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-27 DOI: 10.1149/1945-7111/ad6b46
Samaneh Shahsavarifar, Morteza Rezapour, Mehdi Mehrpooya, Hermann Ehrlich, Teofil Jesionowski, Mohammad Reza Ganjali, Rafael Luque, Mehdi Rahimi-Nasrabadi
{"title":"Review—Advances in Rechargeable Lithium-Ion Batteries Utilizing Polyoxometalate-Functionalized Nanocarbon Materials","authors":"Samaneh Shahsavarifar, Morteza Rezapour, Mehdi Mehrpooya, Hermann Ehrlich, Teofil Jesionowski, Mohammad Reza Ganjali, Rafael Luque, Mehdi Rahimi-Nasrabadi","doi":"10.1149/1945-7111/ad6b46","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6b46","url":null,"abstract":"Polyoxometalates (POMs) are inorganic nanoclusters that consist of oxygen and transition metals. These nanoclusters serve as excellent precursors for creating electrode materials that contain transition metals. Additionally, the interaction between POMs and carbon substrates produces positive synergistic effects. There has been considerable attention on employing POMs and carbon nanostructures (for example carbon nanotubes, graphene, and mesoporous carbon) in composite materials for diverse purposes including catalysis, transformation, storage of energy, molecular detection, and electrical detection. By combining the reactive nature of POMs with the exceptional electrical properties of carbon nanostructures, highly desirable composite features can be achieved. This review delves into the extensive use of POM/nanocarbon materials for constructing rechargeable lithium-ion batteries, providing an in-depth analysis of the characteristics of POMs and the techniques employed for binding carbon.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"40 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Potential and the Presence of Boric Acid on Pt1-xCox Alloy Electrodeposition and Magnetic Properties 电位和硼酸对 Pt1-xCox 合金电沉积和磁性能的影响
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-26 DOI: 10.1149/1945-7111/ad6b48
Eric D. Rus, Eduardo L. Corrêa, Cindi L. Dennis, Thomas P. Moffat
{"title":"Influence of Potential and the Presence of Boric Acid on Pt1-xCox Alloy Electrodeposition and Magnetic Properties","authors":"Eric D. Rus, Eduardo L. Corrêa, Cindi L. Dennis, Thomas P. Moffat","doi":"10.1149/1945-7111/ad6b48","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6b48","url":null,"abstract":"The effects of potential and the presence of B(OH)<sub>3</sub> on Pt<sub>1-x</sub>Co<sub>x</sub> alloy electrodeposition from aqueous chloride-based solutions on Ru substrates was investigated. Films deposited at potentials more reducing than −0.65 V vs SCE were hexagonal close packed and greater than 90% Co (mole basis), and films deposited at potentials more oxidizing than −0.65 V were face centered cubic and showed a monotonic decrease in cobalt content as the potential increased. The composition and structure-potential dependences were not strongly affected by the presence of B(OH)<sub>3</sub>. Structural change coincided with a distinct knee-like feature in the composition-potential relationship, along with a prominent narrow voltammetric peak associated with Co deposition, possibly related to nucleation and growth of the hcp phase. The presence of B(OH)<sub>3</sub> produced a sharp minimum in both Coulombic efficiency and deposition rate at potentials near −0.65 V and almost entirely suppressed the voltammetric feature. This may be associated with a combination of B(OH)<sub>3</sub>-derived proton reduction and inhibition of metal deposition by adsorbed B(OH)<sub>3</sub> or B(OH)<sub>3</sub>-derived species. The presence of B(OH)<sub>3</sub> affected the magnetic behavior of films deposited at potentials more oxidizing than −0.55 V (i.e., those with compositions less than about 40% Co) only weakly, but resulted in generally smaller maximum magnetizations for films deposited at more reducing potentials, and notably a much lower magnetization for films deposited at −0.65 V.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"5 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Based Materials for Electrochemical Detection of Bisphenol A 用于电化学检测双酚 A 的生物基材料
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-23 DOI: 10.1149/1945-7111/ad6eb8
Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi
{"title":"Bio-Based Materials for Electrochemical Detection of Bisphenol A","authors":"Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi","doi":"10.1149/1945-7111/ad6eb8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6eb8","url":null,"abstract":"Bisphenol A is a widely used endocrine disruptor known for its toxicity and prevalence in the environment. It contaminates drinking water, especially when plastic bottles are exposed to Sunlight. Rapid, on-site detection of BPA in drinking water is crucial for protecting human health and the environment. Herein, we developed an electrochemical sensor for detecting and monitoring bisphenol A in water bodies utilizing biobased materials. The device uses a biopolymeric membrane with agarose and gelified green tea tannins (GT/Agar). A sensitive part was made using this natural composite due to its high ability to attach bisphenol A to tannin monomers. Green tea tannins were purified and characterized through HPLC, FTIR, SEM, and AFM. The electrochemical activity of the GT-Agar/Au sensor is also evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, square wave voltammetry and scan rate. Based on its redox signal under the optimal experimental conditions, this sensor has a detection range of 10<sup>−16 </sup>M to 10<sup>−4 </sup>M, a limit of detection of 1.52 to 10<sup>−17 </sup>M and very high selectivity. The proposed sensor successfully determined BPA levels from ultra-trace concentrations in bottled water samples, achieving satisfactory recovery rates. Compared to the results obtained using HPLC, it demonstrates high reliability.<inline-formula>\u0000<inline-graphic xlink:href=\"jesad6eb8-ga.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"99 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of PVdF Distribution on Properties and Performance of Dry Spray-Coated Graphite Electrodes for Lithium-Ion Batteries for Electric Vehicle Applications PVdF 分布对电动汽车用锂离子电池干喷涂石墨电极特性和性能的影响
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-08 DOI: 10.1149/1945-7111/ad6936
J. Alberto Barreras-Uruchurtu, Nicolas Besnard, Clément Paul, Lauréline Marchal, Samuel Devisme and Bernard Lestriez
{"title":"Effect of PVdF Distribution on Properties and Performance of Dry Spray-Coated Graphite Electrodes for Lithium-Ion Batteries for Electric Vehicle Applications","authors":"J. Alberto Barreras-Uruchurtu, Nicolas Besnard, Clément Paul, Lauréline Marchal, Samuel Devisme and Bernard Lestriez","doi":"10.1149/1945-7111/ad6936","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6936","url":null,"abstract":"We used electrostatic dry spray-coating to fabricate graphite/PVdF anodes. We compared the morphological, mechanical, electrical, and electrochemical properties of electrodes fabricated with three different mixing times of dry electrode components. Quantitative and novel relationships between the PVdF distribution and the electrode properties were obtained. Our investigations suggest that our fabrication methods are viable alternatives for producing electrodes with comparable properties to those fabricated using traditional wet solvent-based methods. Overall, our work provides insights into new and promising methods for fabricating high-quality dry-sprayed electrodes (DSEs) with high mass loadings for use in a variety of electrochemical applications such as electric vehicles.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"10 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isovalent Co-Substitution of Iron and Titanium into Single-Crystal NMC622 单晶 NMC622 中铁和钛的等价共取代作用
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-08 DOI: 10.1149/1945-7111/ad68e4
Macgregor F. Macintosh, Mohsen Shakouri and M. N. Obrovac
{"title":"Isovalent Co-Substitution of Iron and Titanium into Single-Crystal NMC622","authors":"Macgregor F. Macintosh, Mohsen Shakouri and M. N. Obrovac","doi":"10.1149/1945-7111/ad68e4","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68e4","url":null,"abstract":"Substitutional Li[Ni0.6Mn0.2Co0.2]O2 oxides (known as NMC622) were made by all-dry synthesis with Fe and Ti substituting Co and Mn, respectively. The substitutions were performed in three series, Fe substitution for Co, Ti substitution for Mn, and Fe and Ti co-substitution for Co and Mn, according to the formula Li(Ni0.6Mn0.2−yCo0.2−xFexTiy)O2. The resulting oxides were evaluated as cathode materials for Li-ion batteries. Fe-substitution for Co resulted in increased intersite mixing, resulting in increased polarization and capacity fade. Ti-substitution for Mn also resulted in increased intersite mixing, but the mixing was due to Ti3+ in the Li-layer. As a result, Ti-substituted NMCs had improved capacity retention and reduced polarization. These effects were independent of each other, so that Ti could partially offset the negative aspects of Fe-substitution. Additionally, layered Mn-free Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) was produced as an endmember of this series for the first time with low intersite mixing and superior electrochemical performance in comparison to previous reports. These results demonstrate benefits of all-dry Ti-substitution in NMC and the all-dry synthesis method as an avenue towards new cathode composition discovery.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"373 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Possible Role of Thermite Reactions in Thermal Runaway of Li-ion Cells with Layered Cathodes 热释电反应在层状阴极锂离子电池热失控中的可能作用
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-07 DOI: 10.1149/1945-7111/ad6939
Rodney LaFollette and Michael D. Eskra
{"title":"The Possible Role of Thermite Reactions in Thermal Runaway of Li-ion Cells with Layered Cathodes","authors":"Rodney LaFollette and Michael D. Eskra","doi":"10.1149/1945-7111/ad6939","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6939","url":null,"abstract":"It is often observed that some runaway Li-ion cells with layered cathode materials become much hotter internally than existing thermal runaway models predict. Further, metals originally in the positive active material (such as Co, Ni, and Mn) are often found in cells whose temperatures became very high. It has been postulated that the formation of metals can be attributed to reduction of rock salt species (MO, where M is the metal), or the reaction of lithiated active material (LiMO2) with CO2. We propose an alternate process for formation of metals that also results in very high cell temperatures, namely thermite reactions between the Al positive electrode current collector and the positive active material. These reactions are highly exothermic, in contrast with the reactions of MO and LiMO2 mentioned. In this paper the thermodynamics of thermite reactions are presented. Incorporating thermite reactions in runaway models will likely improve temperature prediction of Li-ion cells in thermal runaway.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"26 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capacity and Resistance Diagnosis of Batteries with Voltage-Controlled Models 用电压控制模型诊断电池的容量和电阻
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-07 DOI: 10.1149/1945-7111/ad6938
Wolfgang G. Bessler
{"title":"Capacity and Resistance Diagnosis of Batteries with Voltage-Controlled Models","authors":"Wolfgang G. Bessler","doi":"10.1149/1945-7111/ad6938","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6938","url":null,"abstract":"Capacity and internal resistance are key properties of batteries determining energy content and power capability. We present a novel algorithm for estimating the absolute values of capacity and internal resistance from voltage and current data. The algorithm is based on voltage-controlled models. Experimentally-measured voltage is used as an input variable to an equivalent circuit model. The simulation gives current as output, which is compared to the experimentally-measured current. We show that capacity loss and resistance increase lead to characteristic fingerprints in the current output of the simulation. In order to exploit these fingerprints, a theory is developed for calculating capacity and resistance from the difference between simulated and measured current. The findings are cast into an algorithm for operando diagnosis of batteries operated with arbitrary load profiles. The algorithm is demonstrated using cycling data from lithium-ion pouch cells operated on full cycles, shallow cycles, and dynamic cycles typical for electric vehicles. Capacity and internal resistance of a “fresh” cell was estimated with high accuracy (mean absolute errors of 0.9% and 1.8%, respectively). For an “aged” cell, the algorithm required adaptation of the model’s open-circuit voltage curve to obtain high accuracies. Highlights Operando diagnosis of capacity and internal resistance of rechargeable batteries. Novel algorithm developed, validated and demonstrated. Use of voltage-controlled models: Voltage as input, current as output. High accuracy achieved for dynamic operation of an NMC-LMO/graphite pouch cell.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"16 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Material Lithiation in Gr/SiOx Blend Anodes at Increased C-Rates 提高 C 速率时 Gr/SiOx 混合阳极中的活性材料锂化
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-07 DOI: 10.1149/1945-7111/ad68a9
Julian Knorr, Jiahao Li, Maximilian Schamel, Thomas Kufner, Alexander Adam and Michael A. Danzer
{"title":"Active Material Lithiation in Gr/SiOx Blend Anodes at Increased C-Rates","authors":"Julian Knorr, Jiahao Li, Maximilian Schamel, Thomas Kufner, Alexander Adam and Michael A. Danzer","doi":"10.1149/1945-7111/ad68a9","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68a9","url":null,"abstract":"The energy density of lithium-ion batteries can be improved by adding silicon as a secondary active anode material alongside graphite. However, accurate state estimation of batteries with blend electrodes requires detailed knowledge of the interplay between the active materials during lithiation. Challenges arise from the current split between the active materials and the overlap of their working potentials. This study examines the lithiation behavior of blend anodes using a setup consisting of a pure graphite and a pure SiOx half-cell connected in parallel. The setup allows for current measurements of both active materials, the determination of the state of lithiation throughout the entire charging process and measurements of balancing effects between the active materials during relaxation periods. Analysis of the behavior at increased charge rates results in greater SiOx lithiation after similar charge throughput indicating better kinetics for SiOx compared to graphite. A Doyle-Fuller-Newman model of a blend anode is used to further investigate the experimental findings on the lithiation behavior and transfer them to blend electrodes. Simulation-based variations of the silicon content show that an increased SiOx content in blend anodes leads to improved rate capability.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"70 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric Influences on Li6PS5Cl Separators and the Resulting Ionic Conductivity for All-Solid-State Batteries 大气对全固态电池中 Li6PS5Cl 分离剂及其离子电导率的影响
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-07 DOI: 10.1149/1945-7111/ad68a8
Timon Scharmann, Canel Özcelikman, Do Minh Nguyen, Carina Amata Heck, Christian Wacker, Peter Michalowski, Arno Kwade and Klaus Dröder
{"title":"Atmospheric Influences on Li6PS5Cl Separators and the Resulting Ionic Conductivity for All-Solid-State Batteries","authors":"Timon Scharmann, Canel Özcelikman, Do Minh Nguyen, Carina Amata Heck, Christian Wacker, Peter Michalowski, Arno Kwade and Klaus Dröder","doi":"10.1149/1945-7111/ad68a8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad68a8","url":null,"abstract":"All-solid-state batteries (ASSBs), defined through a solid electrolyte, are emerging as a promising solution to address current challenges in energy and power density demands for electromobility. Within the various possible types of solid electrolytes, sulfide-based materials exhibit advantageous high ionic conductivities. However, due to the strong reactivity of sulfides, atmospheric exposure can lead to the formation of toxic hydrogen sulfide and additionally negatively impact the resulting battery performance. Both factors present key challenges for ASSB production, as they necessitate the development of a material-adapted, economically viable and safe process atmosphere. In the present study, the influence of different production atmospheres on sulfide-based solid electrolytes is experimentally investigated. For this purpose, sulfide sheets are exposed to defined atmospheres with dynamic air fluctuations at dew points ranging from −60 °C to 0 °C. The resulting ionic conductivities indicate a dependency on the prevailing dew point and exposure time with a discernible impact on performance even at dew points of −60 °C within atmospheres with constant air circulation. With the acquired results, a detailed and knowledge-based selection and design of dry room production atmospheres for ASSB cell assembly is possible, which is a necessary step for further industrialization.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"70 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning of Band Gap of Cathode Li2NiPO4F by Replacing P to Nb and Forming Li2NiNbO4F for Application as 5 V Cathode in Lithium Ion Battery: A Density Functional Theory Study 通过将 P 替换为 Nb 并形成 Li2NiNbO4F 阴极来调整 Li2NiPO4F 的带隙,以用作锂离子电池中的 5 V 正极:密度泛函理论研究
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-08-07 DOI: 10.1149/1945-7111/ad69c8
Shamik Chakrabarti and A. K. Thakur
{"title":"Tuning of Band Gap of Cathode Li2NiPO4F by Replacing P to Nb and Forming Li2NiNbO4F for Application as 5 V Cathode in Lithium Ion Battery: A Density Functional Theory Study","authors":"Shamik Chakrabarti and A. K. Thakur","doi":"10.1149/1945-7111/ad69c8","DOIUrl":"https://doi.org/10.1149/1945-7111/ad69c8","url":null,"abstract":"Electrochemical properties of Li2NiPO4F were studied using density functional theory. The obtained voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density are achieved as 5.33 V, 4.0 eV, 287.3 mAh g−1 and 1531.31 Wh kg−1, respectively. Although, the electrochemical properties of Li2NiPO4F are promising, large electronic band gap would certainly pose a limitation for its commercial application. Nb is a transition metal and its electronegativity is 1.6 which is less than the electronegativity of 2.19 for P. This implies, less operating voltage would be obtained if we replace P in Li2NiPO4F by Nb to form Li2NiNbO4F. However, electronic configuration of Nb is [Kr] 4d45 s1 and the valance state of Nb in Li2NiNbO4F is +5, which in turn specify that, localized Nb d states will reside in conduction band of Li2NiNbO4F and hence the electronic band-gap would be less owing to this localized Nb-d states. Our speculation gets verified by the calculated properties of Li2NiNbO4F obtained through DFT as follows; Voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density achieved, respectively, are 5.01 V, 3.64 eV (less than LiFePO4), 215.71 mAh g−1, 1080.71 Wh kg−1. Lower electronic band gap of Li2NiNbO4F makes it an alternative to Li2NiPO4F.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"23 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信