Journal of The Electrochemical Society最新文献

筛选
英文 中文
Nitride Lithium-ion Conductors with Enhanced Oxidative Stability 氧化稳定性更强的氮化物锂离子导体
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-12 DOI: 10.1149/1945-7111/ad76db
KyuJung Jun, Yihan Xiao, Wenhao Sun, Young-Woon Byeon, Haegyeom Kim and Gerbrand Ceder
{"title":"Nitride Lithium-ion Conductors with Enhanced Oxidative Stability","authors":"KyuJung Jun, Yihan Xiao, Wenhao Sun, Young-Woon Byeon, Haegyeom Kim and Gerbrand Ceder","doi":"10.1149/1945-7111/ad76db","DOIUrl":"https://doi.org/10.1149/1945-7111/ad76db","url":null,"abstract":"It is desirable to develop solid electrolytes that have both excellent reductive stability against lithium metal and oxidative stability against high-voltage cathodes. However, no inorganic superionic conductors reported thus far satisfy these criteria. Nitrides exhibit intrinsically superior stability against reduction but are often readily oxidized at voltages as low as 0.6 V. In this article, we investigated all nitride-based compounds to search for materials with improved oxidative stabilities over 2.0 V while retaining their intrinsic stability against Li metal. We found two compounds, LiPN2 and Li2CN2, with high oxidative stability > 2.0 V and low vacancy migration energies. Using fine-tuned CHGNet machine-learning interatomic potential, we found that upon introducing aliovalent dopants to introduce vacancies in Li2CN2, the dopant and vacancy strongly anchor with each other to result in trapped vacancies, which lowers ionic conductivity. In contrast, vacancies and dopants have minimal interactions in LiPN2, resulting in a high ionic conductivity. These two compounds were synthesized, but their ionic conductivities were not successfully measured because of the challenges in densification. With improved processing conditions, these compounds may serve as anode-side separators in dual-separator-type all-solid-state batteries or anode buffer layer materials interfaced with lithium metal.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying Problematic Phase Transformations in Pb Foil Anodes for Sodium-Ion Batteries 识别钠离子电池铅箔阳极中的问题相变
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-12 DOI: 10.1149/1945-7111/ad76e0
Jia Zhang, Tianye Zheng, Xiaoyang Guo, Hung Quoc Nguyen, Ka-wai Eric Cheng, Kwok-Ho Lam, Daniel Rettenwander, Wei Jin and Steven T. Boles
{"title":"Identifying Problematic Phase Transformations in Pb Foil Anodes for Sodium-Ion Batteries","authors":"Jia Zhang, Tianye Zheng, Xiaoyang Guo, Hung Quoc Nguyen, Ka-wai Eric Cheng, Kwok-Ho Lam, Daniel Rettenwander, Wei Jin and Steven T. Boles","doi":"10.1149/1945-7111/ad76e0","DOIUrl":"https://doi.org/10.1149/1945-7111/ad76e0","url":null,"abstract":"Group IVA elements have aroused attention in sodium-ion batteries (SIBs) due to their Na-storage capability. Among them, Pb is less explored perhaps due to its perceived risks, but its long-standing success in Pb-acid batteries should not be neglected. Together with the well-established recycling procedures, the merits of Pb warrant further investigations as a practical SIB anode. In this work, four intermetallic phases are detected during electrochemical sodiation of Pb, which yields a capacity of ∼460 mAh·g−1 (∼1167 mAh·cm−3) upon the formation of Na15Pb4. When pursuing full capacities, the electrode stops functioning after only 3–4 cycles largely due to electrode physical damage. The reversibility of each phase transformation pair is then assessed to explore the origins of capacity fading. The NaPb/Na9Pb4 transformation shows the worst stability, consistent with the observed structural damage (e.g., cracks and voids). Through bypassing the problematic phase transformations using a partial cycling protocol, the stability of Pb foil anodes is improved, giving 20 cycles with 85% capacity retention. Considering other factors are unoptimized, it is suggested that the Pb-based anodes should not be fully eliminated from the future roadmap of SIBs, as the prospective merits can create value to ensure the management of such materials of concern.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2- tolerant CuFe2O4 as Bifunctional Electrocatalyst for Transition from Rechargeable Li-O2 to Li-CO2 Batteries 耐二氧化碳的 CuFe2O4 作为双功能电催化剂实现从可充电锂-O2 电池到锂-CO2 电池的过渡
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI: 10.1149/1945-7111/ad76e1
Sharafudeen Pamangadan C., Snehangshu Patra and Elumalai Perumal
{"title":"CO2- tolerant CuFe2O4 as Bifunctional Electrocatalyst for Transition from Rechargeable Li-O2 to Li-CO2 Batteries","authors":"Sharafudeen Pamangadan C., Snehangshu Patra and Elumalai Perumal","doi":"10.1149/1945-7111/ad76e1","DOIUrl":"https://doi.org/10.1149/1945-7111/ad76e1","url":null,"abstract":"CO2-tolerant rechargeable Lithium-Air batteries are seen as a high-performing alternative to Li-ion batteries. They utilize O2 from the air, reducing it at the cathode to form lithium peroxide (Li2O2) during discharge which is then oxidized to form lithium-metal and freeing O2 during charging. Most of the present studies involve pure O2 as the cathode material instead of aerial O2, which has a stiff-challenge due to atmospheric CO2 which produces Li2CO3 during discharge, posing a resistive load on the battery if not re-oxidized on charging. Ideally, presence of CO2 should enhance the charge-storage capacity if it is cycled reversibly. Thus, present research aims at taking advantage of both O2 and CO2 by employing metallic Cu on CuFe2O4 catalyst, synthesized from a one-step auto-combustion route. The Cu metal present in the catalyst leads to a low surface-area, yet the catalyst demonstrates excellent oxygen reduction reaction and moderate oxygen evolution reaction activity. excellent CO2 reduction reaction activity, oxidizing both the Li2O2 and the Li2CO3 during charge in both 10% CO2 and 100% CO2 atmospheres. The fabricated Li-CO2 battery operates for practical application, suggesting the suitability of the catalyst for the transition from practical Li-O2 battery to Li-Air battery.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review—Principles and Applications of Electrochemical Polishing 回顾--电化学抛光的原理和应用
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI: 10.1149/1945-7111/ad75bc
Yanqiu Xu, Yachun Mao, Muhammad Hammad Ijaz, Mohamed E. Ibrahim, Shiru Le, Fang Wang, Jie Jiang, Dazhao Chi, Maozhong An, Shuhuan Song, Yuhui Huang and Yuhan Zhang
{"title":"Review—Principles and Applications of Electrochemical Polishing","authors":"Yanqiu Xu, Yachun Mao, Muhammad Hammad Ijaz, Mohamed E. Ibrahim, Shiru Le, Fang Wang, Jie Jiang, Dazhao Chi, Maozhong An, Shuhuan Song, Yuhui Huang and Yuhan Zhang","doi":"10.1149/1945-7111/ad75bc","DOIUrl":"https://doi.org/10.1149/1945-7111/ad75bc","url":null,"abstract":"Electrochemical machining (ECM) is an efficient and precise manufacturing technology with broad prospects for numerous applications. As a subset of electrochemical machining, electrochemical polishing (ECP) is an advanced surface finishing method that utilizes electrochemical principles to produce smooth and reflective surfaces on various materials, particularly metals. This process is distinguished by its ability to refine surfaces without causing scratches or other forms of mechanical damage, thereby providing a significant advantage over traditional mechanical polishing techniques. The high processing efficiency of ECP renders it particularly suitable for industries that demand large-scale production and high-quality surface finishes. This work reviews the fundamental aspects of ECP, comparing three mechanisms: viscous film theory, salt film theory, and enhanced oxidation–dissolution equilibrium theory. Furthermore, it examines the factors influencing the effectiveness of ECP, including electrolyte composition, temperature, electropolishing time, voltage, and current. Applications of ECP in stainless steel, copper, nickel, and tungsten are also explored, along with a summary of its integration with advanced technologies. Finally, perspectives on the future development of ECP are discussed.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bifunctional Carbon-LiNO3 Composite Interlayer for Stable Lithium Metal Powder Electrodes as High Energy Density Anode Material in Lithium Batteries 一种双功能碳-LiNO3 复合中间膜,用于将稳定的锂金属粉末电极用作锂电池中的高能量密度负极材料
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI: 10.1149/1945-7111/ad7295
Carlos Tafara Mpupuni, Orynbassar Mukhan, Ji-Su Yun and Sung-Soo Kim
{"title":"A Bifunctional Carbon-LiNO3 Composite Interlayer for Stable Lithium Metal Powder Electrodes as High Energy Density Anode Material in Lithium Batteries","authors":"Carlos Tafara Mpupuni, Orynbassar Mukhan, Ji-Su Yun and Sung-Soo Kim","doi":"10.1149/1945-7111/ad7295","DOIUrl":"https://doi.org/10.1149/1945-7111/ad7295","url":null,"abstract":"Lithium metal remains a promising candidate for high-energy-density rechargeable batteries due to its exceptional specific capacity and low reduction potential. However, practical implementation of lithium metal anodes faces challenges such as dendrite formation, limited cycle life, and safety concerns. This study introduces a novel approach to enhance the performance of lithium metal powder (LMP)-based electrodes by embedding a LiNO3-carbon composite interlayer between the LMP electrode and the copper foil current collector. The N-rich carbon interlayer acts as a reservoir for LiNO3, enabling its gradual release to maintain prolonged stability of the interfacial reactions of the Li-metal and providing additional Li nucleation sites. Our findings demonstrate that the LiNO3-carbon composite effectively suppresses dendrite formation, improves reversible capacity, and stabilizes the solid electrolyte interphase. Additionally, we validated the fast-charging capabilities of the Li/NCM622 half-cell employing the LiNO3-carbon-coated Cu foil with LMP electrodes. Our results highlight the significant synergistic effect of the LiNO3 additive and carbon interlayer in enhancing the performance of lithium metal-based batteries.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review—Graded Catalyst Layers in Hydrogen Fuel Cells - A Pathway to Application-Tailored Cells 回顾--氢燃料电池中的分级催化剂层--通向适合具体应用的电池之路
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI: 10.1149/1945-7111/ad73a7
Marc Ayoub, Thomas Böhm, Markus Bierling, Simon Thiele and Matthew Brodt
{"title":"Review—Graded Catalyst Layers in Hydrogen Fuel Cells - A Pathway to Application-Tailored Cells","authors":"Marc Ayoub, Thomas Böhm, Markus Bierling, Simon Thiele and Matthew Brodt","doi":"10.1149/1945-7111/ad73a7","DOIUrl":"https://doi.org/10.1149/1945-7111/ad73a7","url":null,"abstract":"During steady-state operation, the proton conduction profile and the concentration profiles of the reactants and products transported through catalyst layers are non-uniform in the in-plane and through-plane directions. It is, therefore, a reasonable hypothesis that the optimal arrangement of the constituents of the catalyst layers should also be non-uniform. One way to address the non-uniformity is through graded catalyst layers. This study elucidates the state-of-the-art for graded catalyst layers, which so far were primarily investigated for proton exchange membrane fuel cells (PEMFCs). We identify the most impactful types of gradients in the PEMFC cathode and highlight studies displaying their merits in terms of better conversion efficiencies and longer lifetimes. Furthermore, two critical issues that have received little attention so far are emphasized: on the one hand, industrially relevant manufacturing techniques must be developed and implemented. On the other hand, suitable techniques are needed to identify and characterize the gradients. In this study, guidance to navigate both of these challenges is offered.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pt Nanoparticles Electrochemically Deposited onto Heteroatom-Doped Graphene Supports as Electrocatalysts for ORR in Acid Media 电化学沉积在掺杂杂原子的石墨烯载体上的铂纳米颗粒作为酸性介质中 ORR 的电催化剂
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-10 DOI: 10.1149/1945-7111/ad7296
Raegan Chambers, Sajid Hussain, Jekaterina Kozlova, Kaupo Kukli, Peeter Ritslaid, Arvo Kikas, Vambola Kisand, Heiki Erikson and Kaido Tammeveski
{"title":"Pt Nanoparticles Electrochemically Deposited onto Heteroatom-Doped Graphene Supports as Electrocatalysts for ORR in Acid Media","authors":"Raegan Chambers, Sajid Hussain, Jekaterina Kozlova, Kaupo Kukli, Peeter Ritslaid, Arvo Kikas, Vambola Kisand, Heiki Erikson and Kaido Tammeveski","doi":"10.1149/1945-7111/ad7296","DOIUrl":"https://doi.org/10.1149/1945-7111/ad7296","url":null,"abstract":"Platinum nanoparticles (PtNPs) are attached to different single heteroatom-doped (N, S, P, and B) and dual heteroatom-doped (N, B and N, P) graphene nanosheets via electrochemical deposition using the chronoamperometric method, which allowed for strong attachment of the PtNPs onto the support surface. The effect of the support material on the electrocatalytic activity of the PtNPs on the oxygen reduction reaction (ORR) in acidic media is examined. The PtNPs supported on boron-doped graphene exhibit the highest specific activity (1.26 mA cm−2), and the PtNPs supported on nitrogen and boron dual heteroatom-doped graphene exhibit the highest mass activity (0.70 A mg−1) at 0.9 V vs reversible hydrogen electrode. The kinetics of the ORR vary significantly depending on the dopants, thus concluding that the heteroatom doping of the graphene support material affects the electrocatalytic activity of PtNPs toward the ORR.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Electrochemical Approach for Synthesis of Nanoporous Silver 合成纳米多孔银的新型电化学方法
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-10 DOI: 10.1149/1945-7111/ad7533
Zhen Lei, Ksenya Mull and Nikolay Dimitrov
{"title":"New Electrochemical Approach for Synthesis of Nanoporous Silver","authors":"Zhen Lei, Ksenya Mull and Nikolay Dimitrov","doi":"10.1149/1945-7111/ad7533","DOIUrl":"https://doi.org/10.1149/1945-7111/ad7533","url":null,"abstract":"Cu-Ag alloy films were electrodeposited on Au substrates to serve as precursor alloys for synthesizing finely-structured nanoporous Ag (NPS) structures. Two innovative approaches, surface limited redox replacement (SLRR) and defect mediated growth (DMG) along with overpotential deposition (OPD), were comparatively utilized to fabricate Cu-Ag alloy films. The electrolyte for these novel approaches contained Pb2+ ions to serve either as a sacrificial metal to be replaced by the co-depositing Cu and Ag (in SLRR) or as mediating metal to facilitate the 2D growth of both alloy constituents (in DMG). The resulting alloy films from both approaches displayed superior uniformity and miscibility compared to the OPD alloy, as evidenced by electrochemical scanning electron microscopy (SEM) and X-ray diffraction characterization routines. In a subsequent step, NPS structures were generated through the de-alloying of as-deposited Cu-Ag alloys, as illustrated by SEM imaging that revealed ligament and pore sizes with a thickness in the ballpark of 40 nm. Also, surface area measurements done by a Pb underpotential deposition assay suggested a surface enhancement ratio nearly five times higher than that of flat Ag. Furthermore, various de-alloying potentials were assessed to determine the optimal de-alloying potential for the best outcome of the de-alloying process. Highlights Two new, kinetically mediated approaches were applied to electrodeposit CuAg alloys. Nanoporous Ag (NPS) was synthesized by dealloying of as-deposited CuAg alloys. The optimal dealloying potential range was identified by anodic polarization work. Overpotential growth of CuAg alloy was used as reference throughout the NPS synthesis. The interconnected-porosity NPS structures were studied by SEM and Pb UPD methods.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cathodic Decomposition Electrodes as Standard Reference Electrodes for Molten Salts: Example of the Lithium Eutectic Electrode for the LiCl-KCl Eutectic 作为熔盐标准参考电极的阴极分解电极:用于锂-氯化钾共晶的锂共晶电极示例
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-10 DOI: 10.1149/1945-7111/ad76df
Timothy Lichtenstein, Mark H. Schvaneveldt, Jarrod Gesualdi and Krista L. Hawthorne
{"title":"Cathodic Decomposition Electrodes as Standard Reference Electrodes for Molten Salts: Example of the Lithium Eutectic Electrode for the LiCl-KCl Eutectic","authors":"Timothy Lichtenstein, Mark H. Schvaneveldt, Jarrod Gesualdi and Krista L. Hawthorne","doi":"10.1149/1945-7111/ad76df","DOIUrl":"https://doi.org/10.1149/1945-7111/ad76df","url":null,"abstract":"Alternatives to the widely-used standard anodic decomposition reference electrodes in molten salts are necessary to enable more easily reproduced thermochemical and electrochemical data in molten salt electrolytes. The class of standard reference electrodes called cathodic decomposition electrodes (CDEs) are easily constructed and can be used to make thermochemical measurements in molten salts more directly compared to anodic decomposition electrodes. The lithium eutectic electrode (LEE) was chosen as a sample test case for validation and was applied to thermochemical measurements of electroactive species in molten LiCl-KCl eutectic. Transient measurements were made to measure the Li+/Li reduction potential at zero current in pure LiCl-KCl eutectic relative to a Li-alloy reference electrode to validate the reference potential of the LEE. Literature-reported electromotive force measurements against Li-alloy reference electrodes were used to generate a relationship between the LEE and the standard chlorine electrode and this relationship was used to evaluate measured and reported formal potential measurements for the LiCl-KCl-GdCl3 system. This work demonstrates the general framework for defining CDEs for any molten salt system and a method for calibrating external reference electrodes against a CDE standard reference electrode, improving the ease of obtaining thermochemical and electrochemical measurements in any molten salt system.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Deposition Conditions for VN Thin Films Electrodes for Microsupercapacitors: Influence of the Thickness 微超级电容器 VN 薄膜电极沉积条件的调整:厚度的影响
IF 3.9 4区 工程技术
Journal of The Electrochemical Society Pub Date : 2024-09-10 DOI: 10.1149/1945-7111/ad75be
Allan Lebreton, Jérémy Barbé, Christophe Lethien, Jonathan N. Coleman and Thierry Brousse
{"title":"Tuning Deposition Conditions for VN Thin Films Electrodes for Microsupercapacitors: Influence of the Thickness","authors":"Allan Lebreton, Jérémy Barbé, Christophe Lethien, Jonathan N. Coleman and Thierry Brousse","doi":"10.1149/1945-7111/ad75be","DOIUrl":"https://doi.org/10.1149/1945-7111/ad75be","url":null,"abstract":"Vanadium nitride is a highly promising material for micro-pseudocapacitors when used as a bifunctional thin film, i.e. an electrode material and a current collector, owing to its remarkable electrical and electrochemical properties. However, the specific limitations associated with high-rate cycling remain unclear. In this study, we evaluate how the characteristic time associated with charge/discharge of vanadium nitride films is modified with the film thicknesses using electrochemical impedance spectroscopy and cyclic voltammetry measurements coupled to a semi-empirical model commonly utilized to assess the high-rate behaviour of battery electrodes. Both methodologies are in good agreement and revealed that rate capability of this bi-functional material is limited by the VN electrical conductivity. To confirm this finding, VN thin films were sputtered on platinum current collectors, leading to a six-fold reduction in the characteristic time associated with charge/discharge of the current collectors/electrode material. This underscores the importance of using current collectors even for highly conductive electrode materials.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信