{"title":"Introduction to the Intersection Theory for Twisted Homology and Cohomology Groups","authors":"Keiji Matsumoto","doi":"10.22323/1.383.0007","DOIUrl":"https://doi.org/10.22323/1.383.0007","url":null,"abstract":"We give an introduction to the intersection theory for twisted homology and cohomology groups associated with Euler type integrals of hypergeometric functions. We introuduce twisted homology and cohomology groups motivated by Twisted Stokes’ Theorem, and give their dimension formulas. We define an intersection form between twisted homology groups and that between twisted cohomology groups, and explain how to compute them. These intersection forms are compatible with the natural pairing between the twisted homology and cohomology groups. This compatibility yields a twisted period relation, which relates intersection numbers and period integrals regarded as some kinds of hypergeometric functions. In Appendix, we show that Elliott’s identity can be obtained from the twisted period relation.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134477502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Product of Hessians and Discriminant of Critical Points of Level Function for Hypergeometric Integrals","authors":"K. Aomoto, Masahiko Ito","doi":"10.22323/1.383.0009","DOIUrl":"https://doi.org/10.22323/1.383.0009","url":null,"abstract":"We give in two examples (hyperplane arrangement and circle arrangement) a relation between the product of the Hessians of a level function associated with hypergeometric integrals and discriminant attached to them. We also express the product of values of prime factors of integrand at critical points by the use of basic invariants attached to each arrangement. Our main goal is to give a criterion in terms of the product of Hessians for that all critical points are different from each other.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121121499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schwarz maps for the hypergeometric function","authors":"Masaaki Yoshida","doi":"10.22323/1.383.0011","DOIUrl":"https://doi.org/10.22323/1.383.0011","url":null,"abstract":"","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127148062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Connection formulas related with Appell's hypergeometric function $F_1$","authors":"K. Mimachi","doi":"10.22323/1.383.0010","DOIUrl":"https://doi.org/10.22323/1.383.0010","url":null,"abstract":"","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126007550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Application of Intersection Theory to Feynman Integrals: the multivariate case","authors":"M. K. Mandal, Federico Gasparotto","doi":"10.22323/1.383.0019","DOIUrl":"https://doi.org/10.22323/1.383.0019","url":null,"abstract":"","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128119232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intersection theory, characteristic classes, and algebro-geometric Feynman rules","authors":"P. Aluffi, M. Marcolli","doi":"10.22323/1.383.0012","DOIUrl":"https://doi.org/10.22323/1.383.0012","url":null,"abstract":"We review the basic definitions in Fulton-MacPherson Intersection Theory and discuss a theory of ‘characteristic classes’ for arbitrary algebraic varieties, based on this intersection theory. We also discuss a class of graph invariants motivated by amplitude computations in quantum field theory. These ‘abstract Feynman rules’ are obtained by studying suitable invariants of hypersurfaces defined by the Kirchhoff-Tutte-Symanzik polynomials of graphs. We review a ‘motivic’ version of these abstract Feynman rules, and describe a counterpart obtained by intersection-theoretic techniques.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129059542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Four-loop master integrals and hypergeometric functions","authors":"S. Laporta","doi":"10.22323/1.383.0023","DOIUrl":"https://doi.org/10.22323/1.383.0023","url":null,"abstract":"We recall the analytical result of the 4-loop QED contribution to the electron g-2 and slope, which contain elliptic constants. We describe the relations between four elliptic constants which have 4F3 hypergeometric expressions. In particular we consider a quadratic relation found by Broadhurst and Mellit, and, by introducing a free parameter, we generalize it to a new quadratic relation between values of the hypergeometric 4F3.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123035444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}