Product of Hessians and Discriminant of Critical Points of Level Function for Hypergeometric Integrals

K. Aomoto, Masahiko Ito
{"title":"Product of Hessians and Discriminant of Critical Points of Level Function for Hypergeometric Integrals","authors":"K. Aomoto, Masahiko Ito","doi":"10.22323/1.383.0009","DOIUrl":null,"url":null,"abstract":"We give in two examples (hyperplane arrangement and circle arrangement) a relation between the product of the Hessians of a level function associated with hypergeometric integrals and discriminant attached to them. We also express the product of values of prime factors of integrand at critical points by the use of basic invariants attached to each arrangement. Our main goal is to give a criterion in terms of the product of Hessians for that all critical points are different from each other.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.383.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give in two examples (hyperplane arrangement and circle arrangement) a relation between the product of the Hessians of a level function associated with hypergeometric integrals and discriminant attached to them. We also express the product of values of prime factors of integrand at critical points by the use of basic invariants attached to each arrangement. Our main goal is to give a criterion in terms of the product of Hessians for that all critical points are different from each other.
超几何积分中层次函数临界点的判别与Hessians积
在两个例子(超平面排列和圆排列)中,我们给出了与超几何积分相关的水平函数的hessin积与它们所附加的判别式之间的关系。我们还利用每个排列所附的基本不变量,表示了被积函数在临界点处的素因子值的乘积。我们的主要目标是给出一个关于黑森积的准则所有的临界点都是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信