Intersection theory, characteristic classes, and algebro-geometric Feynman rules

P. Aluffi, M. Marcolli
{"title":"Intersection theory, characteristic classes, and algebro-geometric Feynman rules","authors":"P. Aluffi, M. Marcolli","doi":"10.22323/1.383.0012","DOIUrl":null,"url":null,"abstract":"We review the basic definitions in Fulton-MacPherson Intersection Theory and discuss a theory of ‘characteristic classes’ for arbitrary algebraic varieties, based on this intersection theory. We also discuss a class of graph invariants motivated by amplitude computations in quantum field theory. These ‘abstract Feynman rules’ are obtained by studying suitable invariants of hypersurfaces defined by the Kirchhoff-Tutte-Symanzik polynomials of graphs. We review a ‘motivic’ version of these abstract Feynman rules, and describe a counterpart obtained by intersection-theoretic techniques.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.383.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We review the basic definitions in Fulton-MacPherson Intersection Theory and discuss a theory of ‘characteristic classes’ for arbitrary algebraic varieties, based on this intersection theory. We also discuss a class of graph invariants motivated by amplitude computations in quantum field theory. These ‘abstract Feynman rules’ are obtained by studying suitable invariants of hypersurfaces defined by the Kirchhoff-Tutte-Symanzik polynomials of graphs. We review a ‘motivic’ version of these abstract Feynman rules, and describe a counterpart obtained by intersection-theoretic techniques.
交集理论,特征类,和代数几何费曼规则
本文回顾了Fulton-MacPherson交理论中的基本定义,并在此基础上讨论了任意代数变量的“特征类”理论。我们还讨论了量子场论中由振幅计算驱动的一类图不变量。这些“抽象费曼规则”是通过研究由图的Kirchhoff-Tutte-Symanzik多项式定义的超曲面的合适不变量而得到的。我们回顾了这些抽象费曼规则的“动机”版本,并描述了通过相交理论技术获得的对应版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信