Journal of The Chinese Chemical Society最新文献

筛选
英文 中文
Theoretical exploration on excited state behaviors for 2-(1H-benzo[d]imidazole-2-yl)-6-(benzo[d]-thiazol-2-yl)-4-bromophenol in nonpolar and polar solvents 非极性和极性溶剂中 2-(1H-苯并[d]咪唑-2-基)-6-(苯并[d]噻唑-2-基)-4-溴苯酚激发态行为的理论探索
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-19 DOI: 10.1002/jccs.202400328
Xiaoyi Fu, Jiahe Chen, Qing Wang, Wenjing Xu, Jinfeng Zhao
{"title":"Theoretical exploration on excited state behaviors for 2-(1H-benzo[d]imidazole-2-yl)-6-(benzo[d]-thiazol-2-yl)-4-bromophenol in nonpolar and polar solvents","authors":"Xiaoyi Fu,&nbsp;Jiahe Chen,&nbsp;Qing Wang,&nbsp;Wenjing Xu,&nbsp;Jinfeng Zhao","doi":"10.1002/jccs.202400328","DOIUrl":"https://doi.org/10.1002/jccs.202400328","url":null,"abstract":"<p>Given the potential significance of novel organic fluorophores with potential dual-way proton transfer (PT) reaction channels, in this work we mainly focus on probing into the excited state behaviors for the novel 2-(1H-benzo[d]imidazole-2-yl)-6-(benzo[d]-thiazol-2-yl)-4-bromophenol (BIBTB) fluorophore. Given the two-way PT channels, we firstly check the stable form with hydroxyl points to imidazole and thiazole rings in solvents with different polarities. By twisting dihedral angles (θ1, θ2 and θ3) in the S<sub>0</sub> state, we theoretically verify that the A form (hydroxyl points to thiazole ring) should be the most important part in nonpolar and moderately polar solvents, while the D structure (hydroxyl points toward imidazole ring) becomes more important in polar solvents. Mainly focusing on nonpolar cyclohexane (CYC) and polar acetonitrile (ACE) solvents, we compare the geometrical changes and infrared (IR) vibrational spectral behaviors related to hydrogen bonds. The charge reorganization resulting from frontier molecular orbitals (MOs) and predicted hydrogen bonding energies further reflects the excited state intramolecular proton transfer (ESIPT) tendency. By constructing potential energy curves (PECs) and searching for transition state (TS) forms, we confirm and expound the ultrafast ESIPT mechanism for the BIBTB fluorophore.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 4","pages":"367-373"},"PeriodicalIF":1.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical evaluation of nitrate reduction reaction on single-atom anchored boron nitride fullerene 单原子锚定氮化硼富勒烯上硝酸还原反应的理论评价
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-18 DOI: 10.1002/jccs.202400390
Faiza Shafiq, Lei Yang, Weihua Zhu
{"title":"Theoretical evaluation of nitrate reduction reaction on single-atom anchored boron nitride fullerene","authors":"Faiza Shafiq,&nbsp;Lei Yang,&nbsp;Weihua Zhu","doi":"10.1002/jccs.202400390","DOIUrl":"https://doi.org/10.1002/jccs.202400390","url":null,"abstract":"<p>Nitrate reduction reaction (NO<sub>3</sub>RR) is a powerful technique for eliminating <span></span><math>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow></math> pollution. Here, NO<sub>3</sub>RRs on transition metal-doped boron nitride fullerene (TM/B<sub>11</sub>N<sub>12</sub>) were thoroughly examined utilizing density functional theory (DFT). Co/B<sub>11</sub>N<sub>12</sub>, a potential single-atom catalyst (SAC) with a low thermal barrier for NO<sub>3</sub>RR toward NH<sub>3</sub> synthesis with good stability, activity, and selectivity, was successfully screened out. Co/B<sub>11</sub>N<sub>12</sub> has the lowest limiting potential (<i>U</i><sub>L</sub>) of −0.45 V and good NO<sub>3</sub>RR performance. Due to the comparatively restrained adsorption of proton on Co/B<sub>11</sub>N<sub>12</sub>, competitive hydrogen evolution reaction (HER) is substantially limited. The excellent selectivity for the production of NH<sub>3</sub> is ensured by significant energy barrier prerequisite for the formation of by-products (NO, NO<sub>2</sub>, N<sub>2</sub>O, and N<sub>2</sub>) on Co/B<sub>11</sub>N<sub>12</sub>. By ab initio molecular dynamics (AIMD) simulations, Co/B<sub>11</sub>N<sub>12</sub> exhibits remarkable structural stability at 400 K with minimal distortion as compared to its initial shape. Our research may not only offer a fundamental understanding of the activity origin of NO<sub>3</sub>RR and catalytic mechanism on TM/B<sub>11</sub>N<sub>12</sub> but also open up opportunities for rational designing of SACs for NO<sub>3</sub>RR toward the NH<sub>3</sub> synthesis.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"257-264"},"PeriodicalIF":1.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of Si and Nb doping on physical properties of ZnO powder with high photocatalytic performances on the degradation of organic pollutants Si和Nb掺杂对高光催化降解有机污染物性能ZnO粉体物理性能的影响
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-17 DOI: 10.1002/jccs.202400366
G. Essalah, J. C. Carru, H. Guermazi, G. Leroy, B. Duponchel, S. Guermazi
{"title":"The effect of Si and Nb doping on physical properties of ZnO powder with high photocatalytic performances on the degradation of organic pollutants","authors":"G. Essalah,&nbsp;J. C. Carru,&nbsp;H. Guermazi,&nbsp;G. Leroy,&nbsp;B. Duponchel,&nbsp;S. Guermazi","doi":"10.1002/jccs.202400366","DOIUrl":"https://doi.org/10.1002/jccs.202400366","url":null,"abstract":"<p>The dopant elements of ZnO matrix play a crucial role in enhancing the performance of desired properties. Hence, in this article we introduce a comparative study between 1% Si and 1% Nb-doped ZnO properties. The structural investigation proves the successful preparation of Si and Nb- doped ZnO. In addition, the impedance spectra of Nb-doped ZnO are well adjusted using an equivalent circuit formed by serial contributions of two parallel resistance R and constant phase element (CPE). Thus, we demonstrate that the capacitive behavior is due to improved grain boundary effect. While ZnO:Si impedance spectra are modeled by a circuit formed by a parallel connection of a resistance R and a capacitance C. In addition, ZnO:Nb exhibits thermally activated DC conductivity, while ZnO:Si conductivity is quasi-independent of temperature. With Si doping, dielectric properties shift to those of an insulator. Moreover, the obtained results prove Nb-doping can be a promising route to make ZnO a good candidate for applications as thermistor with a Negative Temperature Coefficient (NTC). In addition, Si, Nb doped ZnO show excellent photocatalytic performances in methylene blue degradation, that reached 97% under solar light illumination for 105 min. This makes them promising candidates for wastewater purification.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"317-332"},"PeriodicalIF":1.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preview: Journal of the Chinese Chemical Society 02/2025 《中国化学会学报》2025年第2期
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-12 DOI: 10.1002/jccs.202502001
{"title":"Preview: Journal of the Chinese Chemical Society 02/2025","authors":"","doi":"10.1002/jccs.202502001","DOIUrl":"https://doi.org/10.1002/jccs.202502001","url":null,"abstract":"","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 2","pages":"237"},"PeriodicalIF":1.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jccs.202502001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover: Journal of the Chinese Chemical Society 02/2025 封面:《中国化学会学报》2025年第02期
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-12 DOI: 10.1002/jccs.1993
{"title":"Cover: Journal of the Chinese Chemical Society 02/2025","authors":"","doi":"10.1002/jccs.1993","DOIUrl":"https://doi.org/10.1002/jccs.1993","url":null,"abstract":"<p><b>Focus of the figure</b>: The development of an advanced AgNP-hydrogel composite for biomedical applications. The illustration showcases silver nanoparticles (AgNPs) incorporated into a hydrogel matrix, forming a porous structure for controlled release. This innovative material combines antimicrobial efficacy with enhanced wound healing, offering a promising solution for infection management. More details about this figure will be discussed by Dr. Ryan D. Corpuz and his co-workers on pages 124–162 in this issue.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 2","pages":"95"},"PeriodicalIF":1.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jccs.1993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents and Masthead: Journal of the Chinese Chemical Society 02/2025 目录及刊头:《中国化学会学报》第02/2025期
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-12 DOI: 10.1002/jccs.1994
{"title":"Contents and Masthead: Journal of the Chinese Chemical Society 02/2025","authors":"","doi":"10.1002/jccs.1994","DOIUrl":"https://doi.org/10.1002/jccs.1994","url":null,"abstract":"","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 2","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jccs.1994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How simple models explain complex protein folding behaviors 简单的模型如何解释复杂的蛋白质折叠行为
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-11 DOI: 10.1002/jccs.202400396
Min-Yeh Tsai
{"title":"How simple models explain complex protein folding behaviors","authors":"Min-Yeh Tsai","doi":"10.1002/jccs.202400396","DOIUrl":"https://doi.org/10.1002/jccs.202400396","url":null,"abstract":"<p>Understanding complex protein folding behaviors requires simplified models that capture the essential features of the folding process. Protein folding involves a delicate interplay between short-range (secondary) and long-range (tertiary) interactions, which together dictate the thermodynamic and kinetic properties of the system. In this study, we employ a mean-field framework to investigate these interactions using three progressively refined models. The regular model considers only short-range, nearest-neighbor interactions and reveals a cooperative folding transition driven by localized secondary interactions, consistent with standard two-state folding behavior. The Bryngelson–Wolynes (BW) model incorporates stochastic nonlocal interactions, demonstrating long-range cooperativity and introducing energy landscape ruggedness that shifts the folding transition. The modified Bryngelson–Wolynes (M-BW) model integrates both short-range and long-range effects, leading to the emergence of a hysteresis loop characteristic of first-order-like phase transitions, even in finite systems. These results suggest that the interplay between secondary and tertiary interactions is sufficient to induce phase transition-like properties in proteins. By providing a unified framework, this study highlights how simplified models can elucidate the complex dynamics of protein folding, misfolding, and aggregation, offering critical insights into the underlying mechanisms of these fundamental biological processes.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"247-256"},"PeriodicalIF":1.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on photocatalytic degradation of agro-organochlorine pollutants using multifunctional metal oxide and supported and doped metal oxide nanoarchitecture materials 多功能金属氧化物及负载和掺杂金属氧化物纳米结构材料光催化降解农业有机氯污染物的研究进展
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-02-10 DOI: 10.1002/jccs.202400307
Stephen Sunday Emmanuel, Hamza Badamasi, Saheed O. Sanni, Odunayo T. Ore, Ajibola A. Bayode, Ademidun Adeola Adesibikan
{"title":"A comprehensive review on photocatalytic degradation of agro-organochlorine pollutants using multifunctional metal oxide and supported and doped metal oxide nanoarchitecture materials","authors":"Stephen Sunday Emmanuel,&nbsp;Hamza Badamasi,&nbsp;Saheed O. Sanni,&nbsp;Odunayo T. Ore,&nbsp;Ajibola A. Bayode,&nbsp;Ademidun Adeola Adesibikan","doi":"10.1002/jccs.202400307","DOIUrl":"https://doi.org/10.1002/jccs.202400307","url":null,"abstract":"<p>The environment and public health are seriously threatened by the rising incidence of organochlorine pollutants (OCPs) in aquatic environments. In response, photocatalytic degradation has emerged as a viable and sustainable method for getting rid of these dangerous contaminants. This study offers a thorough examination of the most recent developments in photocatalytic degradation approaches, with a specific focus on multifunctional metal oxide nanoparticles (MONPs). Through a critical appraisal of relevant literature, the review elucidates the underlying mechanisms involved in the photocatalytic degradation of OCPs and evaluates the performance of various metal oxide nanoarchitecture materials. The review also includes an in-depth exploration of the regenerability and recyclability of spent MONPs. Future research directions in the area of circular economy and cost analysis were also provided to help upcoming researchers. In conclusion, this review consolidates the current knowledge on the photocatalytic degradation of emerging OCPs, providing valuable insights into the application of MOPs, and contributing to the development of sustainable and efficient strategies for mitigating the environmental damage of OCPs to aid the actualization of Sustainable Development Goals 3, 6, and 14.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"265-305"},"PeriodicalIF":1.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultrasensitive chemosensor based on Pb(II) complex of a xanthene ligand as an easily commercially available dye for the detection of cysteine in biological samples 一种基于铅(II)配合物的超灵敏化学传感器,它是一种易于商用的染料,用于检测生物样品中的半胱氨酸
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-01-29 DOI: 10.1002/jccs.202400291
Mehdi Moalemian, Hossein Tavallali, Fereydoon Khazali, Mina Hosseini
{"title":"An ultrasensitive chemosensor based on Pb(II) complex of a xanthene ligand as an easily commercially available dye for the detection of cysteine in biological samples","authors":"Mehdi Moalemian,&nbsp;Hossein Tavallali,&nbsp;Fereydoon Khazali,&nbsp;Mina Hosseini","doi":"10.1002/jccs.202400291","DOIUrl":"https://doi.org/10.1002/jccs.202400291","url":null,"abstract":"<p>In this study, an ultra-sensitive colorimetric chemosensor was designed and built for the identification and determination of Pb<sup>2+</sup> and cysteine (Cys) by optical color variation based on indicator displacement evaluation (IDA) using xanthine, bromopyrogallol red (BPR) dye. Label exchange between BPR and Cys occurred when Cys was added to the lead(II) complex (BPR), resulting in a clear and immediate color variation from red to purple in a DMSO/MES buffer (10.0 mmol/L, pH 5.5 (1:4 v/v)). The suggested method shows a detection limit of 5.0 nmol/L and a good linear range of 0.04–4.71 μmol/L for cysteine. Moreover, based on the produced absorbance and color variation, this chemosensor is suggested as an “IMPLICATION” logic gate discussing Pb<sup>2+</sup> and cysteine as input. As an application in molecular devices, based on such a fast and repeatable signal, a molecular-scale sequential memory unit has been designed to exhibit “keypad lock” behavior. The expanded receptor provides satisfactory reproducibility, good precision, and is used for selective determination of Cys in human blood plasma and urine. In addition, the procedure's precision was compared with the results of the suggested procedure with the HPLC method.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"333-347"},"PeriodicalIF":1.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous carbon from ZnCl2-activated biomass: Catalytic performance and structural insights in ORR ZnCl2 活性生物质多孔碳:ORR 催化性能和结构见解
IF 1.6 4区 化学
Journal of The Chinese Chemical Society Pub Date : 2025-01-20 DOI: 10.1002/jccs.202400334
Salman Khan, Zhen Yang, Shouhua Yang, Ying Tang, Xuhong Guo, Feng Yu
{"title":"Porous carbon from ZnCl2-activated biomass: Catalytic performance and structural insights in ORR","authors":"Salman Khan,&nbsp;Zhen Yang,&nbsp;Shouhua Yang,&nbsp;Ying Tang,&nbsp;Xuhong Guo,&nbsp;Feng Yu","doi":"10.1002/jccs.202400334","DOIUrl":"https://doi.org/10.1002/jccs.202400334","url":null,"abstract":"<p>The advancement of metal-air battery and fuel cell technologies depends on finding out of oxygen reduction reaction (ORR) catalysts with higher efficiency. The RH-900/ZnCl<sub>2</sub> catalyst, which is activated by ZnCl<sub>2</sub> and produced from biomass, shows superior ORR activity compared with commercial Pt/C catalysts, with half-wave potentials of 0.89 V. Nanoparticles of ZnO and SiO<sub>2</sub> as well as nitrogen doping, combined with the porous carbon structure, produce this improved performance. The combination enhances the ORR's active site density and enhances electron transfer efficiency. Function groups that facilitate proton transfer and structural stability are shown by Raman spectroscopy and Fourier transform infrared studies, which also show an excellent combination of ordered graphitic and disordered carbon structures and BET analysis confirms a high porous surface area of 1134.82 m<sup>2</sup>/g. Important for enhancing conductivity and catalytic activity, XPS studies reveal the existence of silicon, oxygen, zinc, and nitrogen species. FE-SEM and HRTEM analyses reveal a carbon matrix that is extremely porous and contains ZnO and SiO<sub>2</sub> nanoparticles that are uniformly distributed. Based on the results of the electrochemical tests, RH-900/ZnCl<sub>2</sub> is the best ORR catalyst easily accessible with superior stability and resistance to methanol poisoning compared with RH-900 and commercial Pt/C catalysts. These features placed RH-900/ZnCl<sub>2</sub> unique as a potential long-term replacement for standard Pt-based catalysts in ORR applications within energy conversion and storage devices.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"306-316"},"PeriodicalIF":1.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信