{"title":"单原子锚定氮化硼富勒烯上硝酸还原反应的理论评价","authors":"Faiza Shafiq, Lei Yang, Weihua Zhu","doi":"10.1002/jccs.202400390","DOIUrl":null,"url":null,"abstract":"<p>Nitrate reduction reaction (NO<sub>3</sub>RR) is a powerful technique for eliminating <span></span><math>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow></math> pollution. Here, NO<sub>3</sub>RRs on transition metal-doped boron nitride fullerene (TM/B<sub>11</sub>N<sub>12</sub>) were thoroughly examined utilizing density functional theory (DFT). Co/B<sub>11</sub>N<sub>12</sub>, a potential single-atom catalyst (SAC) with a low thermal barrier for NO<sub>3</sub>RR toward NH<sub>3</sub> synthesis with good stability, activity, and selectivity, was successfully screened out. Co/B<sub>11</sub>N<sub>12</sub> has the lowest limiting potential (<i>U</i><sub>L</sub>) of −0.45 V and good NO<sub>3</sub>RR performance. Due to the comparatively restrained adsorption of proton on Co/B<sub>11</sub>N<sub>12</sub>, competitive hydrogen evolution reaction (HER) is substantially limited. The excellent selectivity for the production of NH<sub>3</sub> is ensured by significant energy barrier prerequisite for the formation of by-products (NO, NO<sub>2</sub>, N<sub>2</sub>O, and N<sub>2</sub>) on Co/B<sub>11</sub>N<sub>12</sub>. By ab initio molecular dynamics (AIMD) simulations, Co/B<sub>11</sub>N<sub>12</sub> exhibits remarkable structural stability at 400 K with minimal distortion as compared to its initial shape. Our research may not only offer a fundamental understanding of the activity origin of NO<sub>3</sub>RR and catalytic mechanism on TM/B<sub>11</sub>N<sub>12</sub> but also open up opportunities for rational designing of SACs for NO<sub>3</sub>RR toward the NH<sub>3</sub> synthesis.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"257-264"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical evaluation of nitrate reduction reaction on single-atom anchored boron nitride fullerene\",\"authors\":\"Faiza Shafiq, Lei Yang, Weihua Zhu\",\"doi\":\"10.1002/jccs.202400390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitrate reduction reaction (NO<sub>3</sub>RR) is a powerful technique for eliminating <span></span><math>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow></math> pollution. Here, NO<sub>3</sub>RRs on transition metal-doped boron nitride fullerene (TM/B<sub>11</sub>N<sub>12</sub>) were thoroughly examined utilizing density functional theory (DFT). Co/B<sub>11</sub>N<sub>12</sub>, a potential single-atom catalyst (SAC) with a low thermal barrier for NO<sub>3</sub>RR toward NH<sub>3</sub> synthesis with good stability, activity, and selectivity, was successfully screened out. Co/B<sub>11</sub>N<sub>12</sub> has the lowest limiting potential (<i>U</i><sub>L</sub>) of −0.45 V and good NO<sub>3</sub>RR performance. Due to the comparatively restrained adsorption of proton on Co/B<sub>11</sub>N<sub>12</sub>, competitive hydrogen evolution reaction (HER) is substantially limited. The excellent selectivity for the production of NH<sub>3</sub> is ensured by significant energy barrier prerequisite for the formation of by-products (NO, NO<sub>2</sub>, N<sub>2</sub>O, and N<sub>2</sub>) on Co/B<sub>11</sub>N<sub>12</sub>. By ab initio molecular dynamics (AIMD) simulations, Co/B<sub>11</sub>N<sub>12</sub> exhibits remarkable structural stability at 400 K with minimal distortion as compared to its initial shape. Our research may not only offer a fundamental understanding of the activity origin of NO<sub>3</sub>RR and catalytic mechanism on TM/B<sub>11</sub>N<sub>12</sub> but also open up opportunities for rational designing of SACs for NO<sub>3</sub>RR toward the NH<sub>3</sub> synthesis.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 3\",\"pages\":\"257-264\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400390\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400390","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical evaluation of nitrate reduction reaction on single-atom anchored boron nitride fullerene
Nitrate reduction reaction (NO3RR) is a powerful technique for eliminating pollution. Here, NO3RRs on transition metal-doped boron nitride fullerene (TM/B11N12) were thoroughly examined utilizing density functional theory (DFT). Co/B11N12, a potential single-atom catalyst (SAC) with a low thermal barrier for NO3RR toward NH3 synthesis with good stability, activity, and selectivity, was successfully screened out. Co/B11N12 has the lowest limiting potential (UL) of −0.45 V and good NO3RR performance. Due to the comparatively restrained adsorption of proton on Co/B11N12, competitive hydrogen evolution reaction (HER) is substantially limited. The excellent selectivity for the production of NH3 is ensured by significant energy barrier prerequisite for the formation of by-products (NO, NO2, N2O, and N2) on Co/B11N12. By ab initio molecular dynamics (AIMD) simulations, Co/B11N12 exhibits remarkable structural stability at 400 K with minimal distortion as compared to its initial shape. Our research may not only offer a fundamental understanding of the activity origin of NO3RR and catalytic mechanism on TM/B11N12 but also open up opportunities for rational designing of SACs for NO3RR toward the NH3 synthesis.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.