A comprehensive review on photocatalytic degradation of agro-organochlorine pollutants using multifunctional metal oxide and supported and doped metal oxide nanoarchitecture materials
Stephen Sunday Emmanuel, Hamza Badamasi, Saheed O. Sanni, Odunayo T. Ore, Ajibola A. Bayode, Ademidun Adeola Adesibikan
{"title":"A comprehensive review on photocatalytic degradation of agro-organochlorine pollutants using multifunctional metal oxide and supported and doped metal oxide nanoarchitecture materials","authors":"Stephen Sunday Emmanuel, Hamza Badamasi, Saheed O. Sanni, Odunayo T. Ore, Ajibola A. Bayode, Ademidun Adeola Adesibikan","doi":"10.1002/jccs.202400307","DOIUrl":null,"url":null,"abstract":"<p>The environment and public health are seriously threatened by the rising incidence of organochlorine pollutants (OCPs) in aquatic environments. In response, photocatalytic degradation has emerged as a viable and sustainable method for getting rid of these dangerous contaminants. This study offers a thorough examination of the most recent developments in photocatalytic degradation approaches, with a specific focus on multifunctional metal oxide nanoparticles (MONPs). Through a critical appraisal of relevant literature, the review elucidates the underlying mechanisms involved in the photocatalytic degradation of OCPs and evaluates the performance of various metal oxide nanoarchitecture materials. The review also includes an in-depth exploration of the regenerability and recyclability of spent MONPs. Future research directions in the area of circular economy and cost analysis were also provided to help upcoming researchers. In conclusion, this review consolidates the current knowledge on the photocatalytic degradation of emerging OCPs, providing valuable insights into the application of MOPs, and contributing to the development of sustainable and efficient strategies for mitigating the environmental damage of OCPs to aid the actualization of Sustainable Development Goals 3, 6, and 14.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 3","pages":"265-305"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400307","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The environment and public health are seriously threatened by the rising incidence of organochlorine pollutants (OCPs) in aquatic environments. In response, photocatalytic degradation has emerged as a viable and sustainable method for getting rid of these dangerous contaminants. This study offers a thorough examination of the most recent developments in photocatalytic degradation approaches, with a specific focus on multifunctional metal oxide nanoparticles (MONPs). Through a critical appraisal of relevant literature, the review elucidates the underlying mechanisms involved in the photocatalytic degradation of OCPs and evaluates the performance of various metal oxide nanoarchitecture materials. The review also includes an in-depth exploration of the regenerability and recyclability of spent MONPs. Future research directions in the area of circular economy and cost analysis were also provided to help upcoming researchers. In conclusion, this review consolidates the current knowledge on the photocatalytic degradation of emerging OCPs, providing valuable insights into the application of MOPs, and contributing to the development of sustainable and efficient strategies for mitigating the environmental damage of OCPs to aid the actualization of Sustainable Development Goals 3, 6, and 14.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.