{"title":"Standing on one foot","authors":"Cássio Cardoso Pereira","doi":"10.1002/fee.2720","DOIUrl":"https://doi.org/10.1002/fee.2720","url":null,"abstract":"<p>As their name implies, ground birds typically spend much of their time foraging on the ground. Regardless of their capacity to fly, ground birds all use their legs more than their wings; for those that can fly, they usually do so to escape predators or reach areas that are inaccessible by walking. This is the case of the red-legged seriema (<i>Cariama cristata;</i> Cariamidae), avian symbol of the Cerrado (Brazilian savanna). Capable of reaching 90 cm in length and weighing up to 1.5 kg, seriemas search for and prey on insects and small vertebrates on the ground (<i>Rev Bras Ornitol</i> 2016; doi.org/10.1007/BF03544333). If pursued, seriemas can run at speeds up to 70 km per hour before taking flight. But how does this imposing bird deal with muscle fatigue in its legs?</p><p>In the Cerrado of Minas Gerais, Brazil, this adult specimen—after a long walk, in search of food—climbed onto a termite mound and, after raising and placing its right foot onto its left leg, remained static for about 15 minutes while observing the landscape before returning to hunting. To the best of my knowledge, the behavior captured in this photograph has not been previously reported in seriemas.</p><p>Does this posture allow a bird to distribute its weight without requiring muscle work by the supporting leg? Does the bird take turns standing on each of its legs? Do seriemas expend less energy when standing on one leg than when standing on two legs, similar to flamingos (Phoenicopteridae) (<i>Biol Lett</i> 2017; doi.org/10.1098/rsbl.2016.0948)? Does this behavior help regulate body temperature? Standing on one foot may be an important strategy for energy regulation in these birds.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2720","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The cephalopod beats the elasmobranch","authors":"Víctor Orenes-Salazar, Javier Ferrer","doi":"10.1002/fee.2719","DOIUrl":"https://doi.org/10.1002/fee.2719","url":null,"abstract":"<p>Three major taxa comprise the bulk of the diet of the common octopus <i>Octopus vulgaris</i> (class Cephalopoda). Besides mollusks and crustaceans, some small fishes (infraclass Teleostei) are also typically found in octopus stomachs (<i>Thalassas</i> 2018; doi.org/10.1007/s41208-018-0084-z). In June 2020, we witnessed a predation event of <i>O vulgaris</i> on the common guitarfish or shovelnose ray <i>Rhinobatos rhinobatos</i> (class Chondrichthyes, subclass Elasmobranchii) off the coast of Cabo de Palos (southeastern Spain, western Mediterranean). To the best of our knowledge, this observation is the first documented record of predation between these two species.</p><p>We observed the predation event while hovering at a depth of 15 m in the ecotone between a seagrass (<i>Posidonia oceanica</i>) meadow and the sandy bottom. The very large octopus had completely immobilized the guitarfish, which was on its back on the seafloor with no chance of escape. How did these two animals initially encounter each other? Did the octopus actively prey on the fish? Given the peculiarity of the event, we hypothesize that the guitarfish was presumably injured or weak, especially considering the opportunistic feeding behavior of the octopus. This recorded event is especially relevant from a conservation viewpoint, given that <i>R rhinobatos</i> is considered extirpated from Spanish Mediterranean waters and is globally cataloged as Critically Endangered on the IUCN Red List of Threatened Species (see also Newell 2017; https://repository.library.noaa.gov/view/noaa/16215).</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2719","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiziana A Gelmi-Candusso, Andrew TM Chin, Connor A Thompson, Ashley AD McLaren, Tyler J Wheeldon, Brent R Patterson, Marie-Josée Fortin
{"title":"Dynamic connectivity assessment for a terrestrial predator in a metropolitan region","authors":"Tiziana A Gelmi-Candusso, Andrew TM Chin, Connor A Thompson, Ashley AD McLaren, Tyler J Wheeldon, Brent R Patterson, Marie-Josée Fortin","doi":"10.1002/fee.2633","DOIUrl":"10.1002/fee.2633","url":null,"abstract":"<p>Protecting wildlife movement corridors is critical for species conservation. Urban planning often aims to create corridors for animal movement through conservation initiatives. However, research on connectivity for urban wildlife is limited. Here, we assessed connectivity for coyotes (<i>Canis latrans</i>) dynamically across temporal scales and demographic traits, parametrized using the habitat selection of 27 global positioning system (GPS)-collared coyotes in the city of Toronto, Canada. The habitat selection models accounted for human population density, impervious area, vegetation density, and distance to different linear features. Results indicated that (1) vegetation-dense areas were key for connectivity in urban areas; (2) riverbanks, railways, and areas below power lines were predicted as movement corridors; and (3) commercial and industrial clusters strongly disrupted connectivity. Spatiotemporal differences in connectivity were associated with time of day and coyote social status but not with climate and biological seasonality or coyote age and sex. Residential roads were pivotal in the temporal dynamism of connectivity. The maintenance and enhancement of plant structural complexity along key infrastructure (for example, highways, waterways, and parking lots) should be considered when managing connectivity corridors in cities.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward a predictable cask theory of species extinction assessment in the Anthropocene","authors":"Youhua Chen, Qiang Dai, Jin Zhou, Danni Tang, De-Zhu Li, Fuwen Wei, Xiangjiang Zhan","doi":"10.1002/fee.2714","DOIUrl":"10.1002/fee.2714","url":null,"abstract":"<p>Predicting species extinction is challenging in the context of climate change. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species assesses species extinction risk by accounting for population size and global range of taxa, but this approach neglects the importance of genetic variability. Here, we propose a life strategy index (LSI) for predicting the extinction risks of species under climate change. The LSI is composed of three fundamental and independent components: namely, evolutionary potential, ecological potential, and colonization potential. The LSI constitutes a so-called “cask” theory of species extinction, which predicts that extinction likelihood is determined by the relative deficiency of any of the three components. The indicative variables used to construct the proposed LSI make the index applicable to assessments of (and predictions for) the extinction risk of different taxa in the face of climate change, which can inform management and conservation of imperiled species in a more scientific and precise manner.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 3","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsey L Thurman, Katrina Alger, Olivia LeDee, Laura M Thompson, Erik Hofmeister, J Michael Hudson, Alynn M Martin, Tracy A Melvin, Sarah H Olson, Mathieu Pruvot, Jason R Rohr, Jennifer A Szymanksi, Oscar A Aleuy, Benjamin Zuckerberg
{"title":"Disease-smart climate adaptation for wildlife management and conservation","authors":"Lindsey L Thurman, Katrina Alger, Olivia LeDee, Laura M Thompson, Erik Hofmeister, J Michael Hudson, Alynn M Martin, Tracy A Melvin, Sarah H Olson, Mathieu Pruvot, Jason R Rohr, Jennifer A Szymanksi, Oscar A Aleuy, Benjamin Zuckerberg","doi":"10.1002/fee.2716","DOIUrl":"https://doi.org/10.1002/fee.2716","url":null,"abstract":"<p>Climate change is a well-documented driver and threat multiplier of infectious disease in wildlife populations. However, wildlife disease management and climate-change adaptation have largely operated in isolation. To improve conservation outcomes, we consider the role of climate adaptation in initiating or exacerbating the transmission and spread of wildlife disease and the deleterious effects thereof, as illustrated through several case studies. We offer insights into best practices for disease-smart adaptation, including a checklist of key factors for assessing disease risks early in the climate adaptation process. By assessing risk, incorporating uncertainty, planning for change, and monitoring outcomes, natural resource managers and conservation practitioners can better prepare for and respond to wildlife disease threats in a changing climate.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond COVID-19: ecotourism's role in ocean conservation targets","authors":"Octavio Aburto-Oropeza, Fabio Favoretto","doi":"10.1002/fee.2712","DOIUrl":"10.1002/fee.2712","url":null,"abstract":"","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damien Olivier, Manuel Olán-Gonzalez, Hector Reyes Bonilla
{"title":"Ecotourism: more than preserving a disturbed environment","authors":"Damien Olivier, Manuel Olán-Gonzalez, Hector Reyes Bonilla","doi":"10.1002/fee.2713","DOIUrl":"10.1002/fee.2713","url":null,"abstract":"","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 2","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uta Müller, Bethanne Bruninga-Socolar, Julia Brokaw, Daniel P Cariveau, Neal M Williams
{"title":"Integrating perspectives on ecology, conservation value, and policy of bee pollinator seed mixes","authors":"Uta Müller, Bethanne Bruninga-Socolar, Julia Brokaw, Daniel P Cariveau, Neal M Williams","doi":"10.1002/fee.2715","DOIUrl":"10.1002/fee.2715","url":null,"abstract":"<p>Wildflower plantings are an effective tool for mitigating floral resource scarcity, a major factor contributing to global declines in pollinator populations. However, the configuration of seed mixes for such plantings can encompass two different conservation goals: namely, the enhancement of a regulating ecosystem service (pollination) or the promotion of diverse pollinator communities, including rare or threatened species. According to which goal is prioritized, seed mixes consequently require different designs and implementation approaches. Here, we review common elements of wildflower seed mixes for native bees and highlight differences in application between the two conservation goals. Our focus on bees stems from agreement among different world regions to their functional value as pollinators and concern about recent global declines in their populations. We link the ecology of seed mixes with current challenges in US and EU policies supporting seed mix implementation. Finally, we advocate not only for clarity in goal setting, which will promote tailored seed mix design and application, but also for a reimagination of seed mix policies to increase their effectiveness for pollinator conservation.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139802302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmen R Cid, Sharon K Collinge, Shahid Naeem, Catherine O'Riordan
{"title":"Elevating the human dimension in ecology—a call for action","authors":"Carmen R Cid, Sharon K Collinge, Shahid Naeem, Catherine O'Riordan","doi":"10.1002/fee.2704","DOIUrl":"https://doi.org/10.1002/fee.2704","url":null,"abstract":"<p>Humans have an enormous impact on ecosystems, biodiversity, and the services that nature provides. For the past 30 years, the Ecological Society of America (ESA) has expanded its emphasis on fundamental ecology to include the human dimensions of environmental change, in response to its members’ growing interest in the key environmental issues that define our times. These efforts include implementing pedagogical innovations in undergraduate education, expanding the human-focused content of ESA publications, facilitating career development, addressing the social and cultural dimensions of environmental issues, and providing mentoring programs that enhance the Society's role in human–environment interactions.</p><p>Since its founding over 100 years ago, ESA has defined its values and focused on being a trusted and accessible source of scientific knowledge regarding biological diversity and ecological systems. More recently, ESA's members have expanded their research questions to include the scientific foundations for effective environmental action and have emphasized providing a diverse community of ecologists with a supportive home to advance their careers. Now, a new ESA journal, Earth Stewardship, will extend the Society's publications to social–ecological researchers engaged in community-based stewardship and biocultural initiatives that co-produce solutions-oriented environmental stewardship across scales, from local to global. Other titles among ESA's existing journal portfolio are facilitating collections of articles that center not only on the importance of integrating cultural perspectives and diversity into research, but also on curricula to develop a well-trained environmental workforce.</p><p>Recently, ESA has inaugurated several sections and a chapter that mutually lead in integrating cultural, social, and human diversity into ecological research, teaching, and practice. ESA has also introduced new mechanisms in its governance to help ensure a more effective and cohesive ESA Council. These changes have fostered greater discussion among members on how best to improve the ways in which ESA can support ecologists of all backgrounds in their careers.</p><p>In 2020, in response to the Black Lives Matter movement, ESA appointed a Diversity, Equity, Inclusion, and Justice (DEIJ) Task Force and then in 2021, a permanent, separate ESA Diversity Committee to help implement the Task Force's recommendations. The DEIJ Task Force developed several recommendations from which the ESA Excellence in Ecology (EEE) Scholarship program emerged, to support early- to mid-career Society members. The EEE Scholarship program seeks to create a network of diverse, action-oriented ecologists whose professional activities center on effectively addressing today's environmental challenges through problem-solving. Now in its third cycle, the EEE Scholarship program has produced three cohorts of scholars who link their research to meeting the environmental needs of b","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izadora Nardi Gonzalez, João Vitor de Alcantara Viana
{"title":"Unusual nectar-thieving behavior in Brazil","authors":"Izadora Nardi Gonzalez, João Vitor de Alcantara Viana","doi":"10.1002/fee.2705","DOIUrl":"10.1002/fee.2705","url":null,"abstract":"<p>When an animal is observed visiting a flower, we tend to think of it as a mutualistic interaction, in which both participants benefit to some degree. However, not all such interactions are mutualisms, as in instances where one partner (the animal) benefits at the expense of the other partner (the plant). In pollination ecology, the lopsided beneficiaries of interactions like these are called nectar “robbers” or “thieves”. This seems to be the case for the bananaquit (<i>Coereba flaveola</i>), a member of the tanager family, seen here in a backyard in the city of Campinas, São Paulo, Brazil, consuming nectar from immature non-native <i>Ixora</i> flowers. Although bananaquits occasionally pierce mature flowers from the side to rob nectar (<i>Sci Rep</i> 2022; doi.org/10.1038/s41598-022-16237-9), the bird pictured here is mechanically opening a closed immature flower with its beak to access the nectar. Does the premature opening of a flower affect its development and the plant's reproductive success? Here, the bananaquit could be considered a nectar thief because of the temporal mismatch, given that the flower's pollen is unavailable or nonviable. Has this behavior spread through the local population of bananaquits, and how did it emerge? Is it a learned behavior by the bananaquit having observed a conspecific or else a different species? Is it a spontaneous behavior that arose independently in certain individuals? Physically opening an immature flower might represent a previously undocumented form of thieving. Further investigations are necessary to determine the relative gains and losses associated with this type of animal–plant interaction.</p>","PeriodicalId":171,"journal":{"name":"Frontiers in Ecology and the Environment","volume":"22 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fee.2705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}