{"title":"Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee- Letter to the Editor & Author Response.","authors":"Sandeep Patel, M S Dhillon, Tungish Bansal","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 2","pages":"80-83"},"PeriodicalIF":2.7,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35787108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"StemRegenin 1 selectively promotes expansion of Multipotent Hematopoietic Progenitors derived from Human Embryonic Stem Cells.","authors":"Lihong Tao, Padma Priya Togarrati, Kyung-Dal Choi, Kran Suknuntha","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Human embryonic stem cell (hESC)-derived hematopoietic stem/progenitor cells hold tremendous potential as alternative cell sources for the treatment of various hematological diseases, drug discovery and toxicological screening. However, limited number of hematopoietic stem/progenitor cells generated from the differentiation of hESCs hinders their downstream applications. Here, we show that aryl hydrocarbon receptor antagonist StemRegenin 1 (SR1) selectively promotes expansion of hESC-derived lin<sup>-</sup>CD34<sup>+</sup> hematopoietic progenitors in a concentration-dependent manner. The colony-forming cell (CFC) activity was found to be enriched in the CD34<sup>+</sup> cells that were expanded with SR1; however, these cells have less colony-forming activity as compared to unexpanded cells (1,338 vs. 7 of CD34<sup>+</sup> cells to form 1 colony, respectively). Interestingly, SR1 showed a bipotential effect on the proliferation of CD34 negative population, that is low dose of SR1 (1 µM) enhanced cell proliferation, whereas it was repressed at higher doses (>5 µM). In summary, our results suggest that SR1 has the potential to facilitate expansion of hESC-derived lin<sup>-</sup>CD34<sup>+</sup> hematopoietic progenitors, which further retain the potential to form multilineage hematopoietic colonies.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 2","pages":"75-79"},"PeriodicalIF":2.7,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35787107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing the <i>in vivo</i> and <i>in vitro</i> effects of hypoxia (3% O<sub>2</sub>) on directly derived cells from murine cardiac explants versus murine cardiosphere derived cells.","authors":"Muhammad Mehdi Amirrasouli, Mehdi Shamsara","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Coronary heart disease (CHD) is still one of the main causes of death in the world, despite significant advances in clinical treatments. Stem cell transplantation methods have the potential to improve cardiac function and patients' outcome following heart attack, but optimal cell types, cell preparation methods and cell delivery routes are yet to be developed. Mammalian hearts contain a small fraction of progenitor cells which, in culture, migrate out of the cardiac explants, known as explant-derived cell (EDCs) and contribute to spheroids known as cardiospheres (Csphs). Following further culture and cell passaging, Csphs give rise to cardiosphere-derived cells (CDCs). EDCs, Csphs and CDCs show <i>in vitro</i> and <i>in vivo</i> angiogenesis and tissue regeneration in myocardial ischemia. However, CDC and Csph formation is time consuming, expensive and not always successful. Therefore, this study aims to compare EDCs with CDCs and assess the effect of hypoxic preconditioning on their pro-angiogenic potential. The data showed that preconditioning EDCs in hypoxic cell culture enhances cell growth, viability and expression of stem cell and pro-angiogenic markers more than CDCs. <i>In vivo</i> experiments using a sub-dermal matrigel plug assay showed that EDCs and CDCs alone have limited pro-angiogenic potential; however, hypoxic preconditioning of EDCs and CDCs significantly enhances this process. Further research will increase our understanding of cardiac stem cell mediated angiogenesis and improve clinical therapies for myocardial infarction (MI) patients.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 2","pages":"35-44"},"PeriodicalIF":2.7,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35786123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"'Cells as tools' to 'Cell-s produced tools' - An evolving paradigm in Regenerative Medicine.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 1","pages":"1-2"},"PeriodicalIF":2.7,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Yew Kenny Boey, Say Liang Daniel Lim, Kin Fai Tang, Ming Ming Li, Andrew Krishna Ekaputra, Prosanto Kumar Chowdhury, Rajat Anand Gopal Mukherjee, Jennifer Teo, Arvin C Faundo, Yoke Fong Chiew
{"title":"Comparative study of the methods of extracting mesenchymal stem cells from cryopreserved Wharton's Jelly.","authors":"Peng Yew Kenny Boey, Say Liang Daniel Lim, Kin Fai Tang, Ming Ming Li, Andrew Krishna Ekaputra, Prosanto Kumar Chowdhury, Rajat Anand Gopal Mukherjee, Jennifer Teo, Arvin C Faundo, Yoke Fong Chiew","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The Wharton's Jelly (WJ) is an established source of mesenchymal stem cells (MSC). We compared 3 methods of extracting WJ-MSC from cryopreserved tissue and determined that enzymatic digestion of the WJ yielded the most viable MSC, compared to the explant and mechanical digestion methods. The enzymatically-released WJ-MSC conformed to the International Society for Cellular Therapy (ISCT) criteria: displayed plastic-adherence, co-expressed CD73, CD90, CD105 and were negative for hematopoietic lineage cell markers.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 1","pages":"29-32"},"PeriodicalIF":2.7,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashu Bhasin, Senthil S Kumaran, Rohit Bhatia, Sujata Mohanty, M V Padma Srivastava
{"title":"Safety and Feasibility of Autologous Mesenchymal Stem Cell Transplantation in Chronic Stroke in Indian patients. A four-year follow up.","authors":"Ashu Bhasin, Senthil S Kumaran, Rohit Bhatia, Sujata Mohanty, M V Padma Srivastava","doi":"","DOIUrl":"","url":null,"abstract":"<p><p><b>Introduction:</b> Stem cell (SC) therapy has been envisioned as a therapeutic vehicle to promote recovery in resistant neurological diseases. Knowing the logistics and paradigms in recovery processes after Stroke, clinicians have pioneered the transplantation therapy. This study presents four-year follow up of our previous trial transplanting bone-marrow-derived animal-free culture expanded intravenous mesenchymal stem cells (MSCs) in chronic stroke which was published in 2010. <b>Methods:</b> We performed an open-label, pilot trial on 12 patients with chronic stroke. Patients were allocated to two groups, those who received intravenous autologous <i>ex vivo</i> cultured mesenchymal stem cells (MSC group) or those who did not (control group), all followed for four years from the day of cell transplantation. <b>Results:</b> The reports have been optimistic regarding safety as we did not find any cell related side effects / mortality till 208th week. We observed that modified Barthel Index showed statistical significant improvement at 156 and 208 weeks of transplantation (95 % CI : -10.27 to 0.07; p =0.041) follow up in the MSC group as compared to controls. The 2nd and 3rd quartile for mBI in MSC group was 89 & 90 respectively suggesting good performance of patients in the stem cell group. The impairment scales i.e., Fugl Meyer, Ashworth tone scale, strength of hand muscles (MRC) did not show any significant improvement at 208th week which is similar to our previous published report. <b>Conclusion:</b> This follow up study primarily indicates safety, tolerance and applicability of autologous mesenchymal stem cells in Stroke. MSCs may act as \"chaperones\" or work through paracrine mechanisms leading to functional recovery post stroke.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 1","pages":"14-19"},"PeriodicalIF":2.7,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mouse iPSC generated with porcine reprogramming factors as a model for studying the effects of non-silenced heterologous transgenes on pluripotency.","authors":"Stoyan G Petkov, Silke Glage, Heiner Niemann","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Mouse somatic cells can be reprogrammed to pluripotency by the ectopic expression of four pluripotency transcription factors, Oct4, Sox2, cmyc, and Klf4. Usually, silencing of the exogenous reprogramming factors is considered to be essential for complete reprogramming and differentiation. In the vast majority of studies, murine pluripotency transcription factor sequences have been used for the reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSC). The effectiveness of xenogeneic transcription factors in miPSC generation has not yet been investigated in detail. Here, we evaluated transposon-based vectors with four porcine pluripotency factors for their ability to reprogram mouse fetal fibroblasts (MEFs) harboring an Oct4-EGFP reporter construct to pluripotency. Additionally, we examined the effects of the non-silenced heterologous transgenes on the expression levels of key endogenous pluripotency markers and the differentiation capacities of the miPSC. Within 8 days of transfection with porcine reprogramming transcription factors the MEFs acquired typical compact miPSC morphology and upregulated expression of endogenous Oct4 and other critical pluripotency genes. Consequently, the transgenes under the control of the TetO promoter became silenced, while the CAG-controlled constructs were expressed throughout the period of culture. Despite the continuous transgene expression, the CAG-miPSC showed normal morphology and were capable of differentiation into the three primary germ layers <i>in vitro</i> and <i>in vivo</i>. However, the expression levels of important endogenous pluripotency markers, Klf4, c-myc, Rex1, and Utf1, were significantly lower in CAG-miPSC compared with TetO-miPSC with silenced reprogramming cassettes. Surprisingly, the endogenous Oct4 and Sox2 expression levels were not affected by the residual transgene expression. Our results suggest that porcine reprogramming transcription factors are suitable for production of miPSC, but silencing of the heterologous transgenes may be necessary for complete reprogramming to pluripotency.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 1","pages":"20-28"},"PeriodicalIF":2.7,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Adaptability of Somatic Stem Cells: A Review.","authors":"Kenyon S Tweedell","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cell and tissue specific somatic stem cells develop as dynamic populations of precursor cells to discrete tissue and organ differentiation during embryonic and fetal stages and their potential evolves with development. Some of their progeny are sequestered into separate cell niches of tissues as adult somatic stem cells at various times during organ development and differentiation These are diverse cell populations of stem and progenitor cells that respond to homeostatic needs for cell and tissue maintenance and the cycling of differentiated cells for physiological/ endocrinological changes. Nominally, multipotent stem cells in one or more niches follow specific lineages of differentiation that can be followed by diverse markers of differentiation. The activation of precursors appears to be stochastic and results in a population of heterogeneous progenitor cells. When variations in the functional need of the tissue or organ occurs, the progenitor cells exhibit flexibility in their differentiation capacity. Regulation of the progenitors is the result of signals from the stem cell niche that can cause adaptive changes in the behavior or function of the stem -progenitor cell lineage. A possible mechanism may be alteration in the differentiation capacity of the resident or introduced cells. Certain quiescent stem cells also serve as a potential cell reservoir for trauma induced cell regeneration through adaptive changes in differentiation of stem cells, progenitor cells and differentiated cells. If the stem-progenitor cell population is normally depleted or destroyed by trauma, differentiated cells from the niche microenvironment can restore the specific stem potency which suggests the process of dedifferentiation.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"13 1","pages":"3-13"},"PeriodicalIF":2.7,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sankaralakshmi Gomathysankar, Ahmad Sukari Halim, Nik Soriani Yaacob, Norhayati Mohd Noor, Mohaini Mohamed
{"title":"Compatibility of Porous Chitosan Scaffold with the Attachment and Proliferation of human Adipose-Derived Stem Cells <i>In Vitro</i>.","authors":"Sankaralakshmi Gomathysankar, Ahmad Sukari Halim, Nik Soriani Yaacob, Norhayati Mohd Noor, Mohaini Mohamed","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adipose-derived stem cells (ASCs) have potential applications in the repair and regeneration of various tissues and organs. The use of various scaffold materials as an excellent template for mimicking the extracellular matrix to induce the attachment and proliferation of different cell types has always been of interest in the field of tissue engineering because ideal biomaterials are in great demand. Chitosan, a marine polysaccharide, have wide clinical applications and it acts as a promising scaffold for cell migration and proliferation. ASCs, with their multi-differentiation potential, and chitosan, with its great biocompatibility with ASCs, were investigated in the present study. ASCs were isolated and were characterized by two different methods: immunocytochemistry and flow cytometry, using the mesenchymal stem cell markers CD90, CD105, CD73 and CD29. The ASCs were then induced to differentiate into adipogenic, osteogenic and chondrogenic lineages. These ASCs were incorporated into a porous chitosan scaffold (PCS), and their structural morphology was studied using a scanning electron microscope and hematoxylin and eosin staining. The proliferation rate of the ASCs on the PCS was assessed using a PrestoBlue viability assay. The results indicated that the PCS provides an excellent template for the adhesion and proliferation of ASCs. Thus, this study revealed that PCS is a promising biomaterial for inducing the proliferation of ASCs, which could lead to successful tissue reconstruction in the field of tissue engineering.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"12 2","pages":"79-86"},"PeriodicalIF":2.7,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induced pluripotent stem cells as a cellular model for studying Down Syndrome.","authors":"Anna Lisa Brigida, Dario Siniscalco","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Down Syndrome (DS), or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy) of chromosome 21 (trisomy), as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer's disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21) are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS) cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28). By reprogramming cells from DS patients, it is possible to obtain new tissue with the same genetic background, offering a valuable tool for studying this genetic disease and to design customized patient-specific stem cell therapies.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"12 2","pages":"54-60"},"PeriodicalIF":2.7,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}