Journal of Stem Cells & Regenerative Medicine最新文献

筛选
英文 中文
The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy. 人类脐带间充质基质细胞衍生的外泌体对伤口愈合的治疗潜力:利用外泌体作为无细胞疗法。
IF 1.1
Journal of Stem Cells & Regenerative Medicine Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI: 10.46582/jsrm.2003003
Leila Dehghani, Iman Owliaee, Fatemeh Sadeghian, Ali Shojaeian
{"title":"The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy.","authors":"Leila Dehghani, Iman Owliaee, Fatemeh Sadeghian, Ali Shojaeian","doi":"10.46582/jsrm.2003003","DOIUrl":"10.46582/jsrm.2003003","url":null,"abstract":"<p><p>Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells (MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro. 羊水间充质干细胞分泌物通过ERK/MAPK途径阻止IL-1β和TNF-α炎症,促进体外OA软骨再生。
IF 1.1
Journal of Stem Cells & Regenerative Medicine Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI: 10.46582/jsrm.2001002
Supatra Klaymook, Napatara Tirawanchai, Suparat Wichitwiengrat, Puttachart Chuaynarong, Sasiprapa Thongbopit, Keerati Chareancholvanich, Tatsanee Phermthai
{"title":"MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro.","authors":"Supatra Klaymook, Napatara Tirawanchai, Suparat Wichitwiengrat, Puttachart Chuaynarong, Sasiprapa Thongbopit, Keerati Chareancholvanich, Tatsanee Phermthai","doi":"10.46582/jsrm.2001002","DOIUrl":"10.46582/jsrm.2001002","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a degenerative disease that causes chronic pain and disability worldwide. This disease is mainly caused by IL-1β and TNF-α, which lead to cartilage degradation and inhibit the repair capacity of damaged cartilage. Recent studies have shown that amniotic fluid mesenchymal stem cells (AF-MSCs) secrete proteins that can effectively help in the treatment of cartilage damaged by OA. However, the underlying mechanism is still unclear. Therefore, the aim of this study was to investigate the effects and mechanisms behind the healing properties of the AF-MSC secretome (AFS-se) under OA conditions. This study involved growing chondrocyte progenitor cells (CPCs) and traumatized cartilage tissues in the presence of the cytokines IL-1β and TNF-α, which mimic OA conditions. AFS-se was then added to the culture medium to determine its effect on the CPCs and cartilage. Cell migration, endogenous cell outgrowth, the expression of chondrogenic and anabolic genes, and the mechanism of proteins in the NF-κB and MAPK signaling pathways were examined in this study. AFS-se inhibited the inflammatory effects of IL-1β and TNF-α by significantly reducing ERK phosphorylation in the MAPK signaling pathway and decreasing downstream proinflammatory COX2 products. The impaired CPCs recovered their ability to migrate, and endogenous CPCs in injured osteoarthritic cartilage were able to regrow in response to inflammatory stimuli. Additionally, the expression of anabolic genes such as <i>Col I</i>, <i>Col II</i>, and <i>IGF1</i> was restored in defective CPCs. In conclusion, this study demonstrated that AFS-se has therapeutic effects on OA by inhibiting the inflammatory functions of IL-1β and TNF-α through protein phosphorylation in the MAPK pathway while also promoting the regenerative and self-repair functions of CPCs in traumatized cartilage.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amniotic Fluid Stem Cells and Their Secretomes as tools of regenerative medicine; Influence of Donor Characteristics on Standardization. 羊水干细胞及其分泌物作为再生医学的工具;供体特征对标准化的影响。
IF 1.1
Journal of Stem Cells & Regenerative Medicine Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI: 10.46582/jsrm.2001001
{"title":"Amniotic Fluid Stem Cells and Their Secretomes as tools of regenerative medicine; Influence of Donor Characteristics on Standardization.","authors":"","doi":"10.46582/jsrm.2001001","DOIUrl":"10.46582/jsrm.2001001","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cues from evolving insights about Cancer stem cells to tackle cancer metastases. 从对癌症干细胞不断发展的认识中寻找线索,解决癌症转移问题。
IF 2.7
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1902006
{"title":"Cues from evolving insights about Cancer stem cells to tackle cancer metastases.","authors":"","doi":"10.46582/jsrm.1902006","DOIUrl":"https://doi.org/10.46582/jsrm.1902006","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I. IDC Key-note Lecture: Trained immunity: a memory for innate host defense. I.IDC Key-note Lecture:训练有素的免疫力:先天宿主防御记忆。
IF 2.7
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1902009
Prof Dr Mihai G Netea
{"title":"I. IDC Key-note Lecture: Trained immunity: a memory for innate host defense.","authors":"Prof Dr Mihai G Netea","doi":"10.46582/jsrm.1902009","DOIUrl":"https://doi.org/10.46582/jsrm.1902009","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I. Biomaterials for reconstruction of bone and cartilage defects. I.用于重建骨和软骨缺损的生物材料。
IF 2.7
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1902008
Mr Yasutoshi Nishikawa
{"title":"I. Biomaterials for reconstruction of bone and cartilage defects.","authors":"Mr Yasutoshi Nishikawa","doi":"10.46582/jsrm.1902008","DOIUrl":"https://doi.org/10.46582/jsrm.1902008","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Umbrella Review on Cancer Stem Cell in Oral and Head and Neck Squamous Cell Carcinoma. 关于口腔癌和头颈部鳞状细胞癌中癌症干细胞的综述。
IF 2.7
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1902007
Maedeh Banki, Mahdieh-Sadat Moosavi
{"title":"Umbrella Review on Cancer Stem Cell in Oral and Head and Neck Squamous Cell Carcinoma.","authors":"Maedeh Banki, Mahdieh-Sadat Moosavi","doi":"10.46582/jsrm.1902007","DOIUrl":"https://doi.org/10.46582/jsrm.1902007","url":null,"abstract":"<p><p>Cancer stem cells (CSCs) are cells in a tumor which can begin to grow, develop, and induce resistance in the tumor. Recent studies have shown that as with mesenchymal stem cells, CSCs can also regenerate themselves and be involved in tumorigenesis. Recent advances in detection of biomarkers for identifying CSCs as well as development of new techniques for evaluating the tumorigenesis and carcinogenesis roles of CSCs have been considerable. In recent years, more systematic review papers have been published about CSCs and head and neck squamous cell carcinoma (HNSCC), highlighting the need to accumulate information and draw final conclusions from these studies. <b>Methods:</b> This research protocol for review followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA-P) checklist. The protocol for this meta-analysis was registered on PROSPERO (International Prospective Register of Systematic Reviews) and the registration number is CRD42022301720. <b>Results:</b> We identified 8 review articles about CSCs in HNSCCs. <b>Conclusions:</b> This umbrella review provides a comprehensive summary of the body of published systematic reviews and reviews in CSCs and HNSCCs. There is strong evidence suggesting that targeting the cancer stem cells could lead to a more definitive response, since the cancer stem cells are the putative drivers of recurrence and metastatic spread in HNSCCs.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening techniques to identify genomic instability of pluripotent stem cells in ensuring the safety of applications in regenerative medicine. 识别多能干细胞基因组不稳定性的筛选技术,确保再生医学应用的安全性。
IF 1.1
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-04-30 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1901001
{"title":"Screening techniques to identify genomic instability of pluripotent stem cells in ensuring the safety of applications in regenerative medicine.","authors":"","doi":"10.46582/jsrm.1901001","DOIUrl":"10.46582/jsrm.1901001","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290817/pdf/jsrm_19_01.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mr. Takashi Onaka Memorial Oration: I. Updates on solutions to DMD. Takashi Onaka 先生的纪念演讲:I. DMD 的最新解决方案。
IF 1.1
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-04-30 eCollection Date: 2023-01-01 DOI: 10.46582/jsrm.1901004
Yoshitsugu Aoki
{"title":"Mr. Takashi Onaka Memorial Oration: I. Updates on solutions to DMD.","authors":"Yoshitsugu Aoki","doi":"10.46582/jsrm.1901004","DOIUrl":"10.46582/jsrm.1901004","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290818/pdf/jsrm_19_19.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1. Parkinson's disease - Perspectives from Alpha-synuclein related pathogenesis and current research. 1. 帕金森病——从α -突触核蛋白相关发病机制及研究现状看
IF 2.7
Journal of Stem Cells & Regenerative Medicine Pub Date : 2023-01-01 DOI: 10.46582/jsrm.1901005
Muralidhar Hegde
{"title":"1. Parkinson's disease - Perspectives from Alpha-synuclein related pathogenesis and current research.","authors":"Muralidhar Hegde","doi":"10.46582/jsrm.1901005","DOIUrl":"https://doi.org/10.46582/jsrm.1901005","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290820/pdf/jsrm_19_22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信