{"title":"I. Biomaterials for reconstruction of bone and cartilage defects.","authors":"Mr Yasutoshi Nishikawa","doi":"10.46582/jsrm.1902008","DOIUrl":"https://doi.org/10.46582/jsrm.1902008","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 2","pages":"34-36"},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Umbrella Review on Cancer Stem Cell in Oral and Head and Neck Squamous Cell Carcinoma.","authors":"Maedeh Banki, Mahdieh-Sadat Moosavi","doi":"10.46582/jsrm.1902007","DOIUrl":"https://doi.org/10.46582/jsrm.1902007","url":null,"abstract":"<p><p>Cancer stem cells (CSCs) are cells in a tumor which can begin to grow, develop, and induce resistance in the tumor. Recent studies have shown that as with mesenchymal stem cells, CSCs can also regenerate themselves and be involved in tumorigenesis. Recent advances in detection of biomarkers for identifying CSCs as well as development of new techniques for evaluating the tumorigenesis and carcinogenesis roles of CSCs have been considerable. In recent years, more systematic review papers have been published about CSCs and head and neck squamous cell carcinoma (HNSCC), highlighting the need to accumulate information and draw final conclusions from these studies. <b>Methods:</b> This research protocol for review followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA-P) checklist. The protocol for this meta-analysis was registered on PROSPERO (International Prospective Register of Systematic Reviews) and the registration number is CRD42022301720. <b>Results:</b> We identified 8 review articles about CSCs in HNSCCs. <b>Conclusions:</b> This umbrella review provides a comprehensive summary of the body of published systematic reviews and reviews in CSCs and HNSCCs. There is strong evidence suggesting that targeting the cancer stem cells could lead to a more definitive response, since the cancer stem cells are the putative drivers of recurrence and metastatic spread in HNSCCs.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 2","pages":"29-33"},"PeriodicalIF":2.7,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening techniques to identify genomic instability of pluripotent stem cells in ensuring the safety of applications in regenerative medicine.","authors":"","doi":"10.46582/jsrm.1901001","DOIUrl":"10.46582/jsrm.1901001","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 1","pages":"1-2"},"PeriodicalIF":1.1,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290817/pdf/jsrm_19_01.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mr. Takashi Onaka Memorial Oration: I. Updates on solutions to DMD.","authors":"Yoshitsugu Aoki","doi":"10.46582/jsrm.1901004","DOIUrl":"10.46582/jsrm.1901004","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 1","pages":"19-21"},"PeriodicalIF":1.1,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290818/pdf/jsrm_19_19.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1. Parkinson's disease - Perspectives from Alpha-synuclein related pathogenesis and current research.","authors":"Muralidhar Hegde","doi":"10.46582/jsrm.1901005","DOIUrl":"https://doi.org/10.46582/jsrm.1901005","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 1","pages":"22-26"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290820/pdf/jsrm_19_22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chris S Pridgeon, Shiva Seyed Forootan, Fang Zhang, Nicholas Harper, Daniel Palmer, Richard Weightmann, Sian Gregory, Zoe Hewitt, Duncan Baker, Jason Halliwell, Harry Moore, Emanuele Ricci, Peter W Andrews, Harish Poptani, David C Hay, B Kevin Park, Chris E P Goldring
{"title":"In Vivo Tumorigenicity of the 20q11.21 Amplicon in an Engraftment Model of hPSCs and Differentiated Liver Cells.","authors":"Chris S Pridgeon, Shiva Seyed Forootan, Fang Zhang, Nicholas Harper, Daniel Palmer, Richard Weightmann, Sian Gregory, Zoe Hewitt, Duncan Baker, Jason Halliwell, Harry Moore, Emanuele Ricci, Peter W Andrews, Harish Poptani, David C Hay, B Kevin Park, Chris E P Goldring","doi":"10.46582/jsrm.1901002","DOIUrl":"https://doi.org/10.46582/jsrm.1901002","url":null,"abstract":"<p><p>Human pluripotent stem cells (hPSCs) are a promising source of somatic cells for clinical applications and disease modelling. However, during culture they accumulate genetic aberrations such as amplification of 20q11.21 which occurs in approximately 20% of extensively cultured hPSC lines and confers a BCL2L1-mediated survival advantage. During the production of the large number of cells required for transplantation and therapy these aberrations may become unavoidable which has important safety implications for therapies and may also impact upon disease modelling. Presently, these risks are poorly understood; whilst it is apparent that large-scale genetic aberrations can pose an oncogenic risk, the risks associated with smaller, more insidious changes have not been fully explored. In this report, the effects of engraftment of human embryonic stem cells (hESCs) and hESC-derived hepatocyte-like cells (HLCs) with and without amplification of the 20q11.21 minimal amplicon and isochromosome 20q (i20q) in SCID-beige mice are presented. The cells were tracked <i>in vivo</i> using a luminescent reporter over a period of approximately four months. Intrasplenic injection of hESCs showed greater engraftment potential and the formation of more severely disruptive lesions in the liver and spleen of animals injected with cells containing 20q11.21 compared with i20q and wild type. HLCs with 20q11.21 engrafted more successfully and formed more severely disruptive lesions than wild type cells or cells with i20q. These results reinforce the notion that karyotyping of therapeutic hPSC is required for transplant, and suggest that screening for known common aberrations is necessary. Further work to identify commonly arising genetic aberrations should be performed and routine screening for hPSCs intended for therapeutic use should be used.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 1","pages":"3-13"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290816/pdf/jsrm_19_03.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9718026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tissue-engineered Minimalistic Reconstruction of a Severely Crushed Fingertip.","authors":"Srinjoy Saha","doi":"10.46582/jsrm.1901003","DOIUrl":"https://doi.org/10.46582/jsrm.1901003","url":null,"abstract":"<p><p>The goals of treatment for fingertip injuries are maximising digital length, tactile sensation, pulp padding, and fingertip appearance while minimising complications like infection and amputation. Currently, terminalisation, healing by secondary intention, and flap surgeries are widely used for crushing fingertip injuries, but they have their own set of issues and limitations. We present a tissue-engineered method by combining platelet-rich fibrin injections with stacked-up layers of synthetic biodegradable temporising matrix to treat a severely crushed fingertip. This novel therapy minimised reconstructions while successfully regenerating new soft-tissues. Soft-tissue regeneration within the stacked-up biodegradable matrix achieved adequate volume, sensation, function, and mobility of the newly reconstructed fingertip while maintaining its skeletal length. Notably, the regenerated fingertip allowed the patient to resume work normally as a busy software engineer. Thus, minimalistic fingertip reconstruction not only prevented a disability, but also served as a viable alternative to major reconstructive surgeries.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"19 1","pages":"14-18"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290819/pdf/jsrm_19_14.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial Comment from Dr Horiguchi to <i>Comparing Periurethral Injection of Autologous Muscle-Derived Stem Cell and 1 Fibroblasts with Mid-Urethral Sling Surgery in the Treatment of Female Stress Urinary 2 Incontinence: A Randomized Clinical Trial</i>.","authors":"","doi":"10.46582/jsrm.1802009","DOIUrl":"10.46582/jsrm.1802009","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"18 2","pages":"52"},"PeriodicalIF":1.1,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837699/pdf/jsrm_18_52.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-transplantation of two different cell populations: A novel step forward to address stress urinary incontinence (SUI).","authors":"","doi":"10.46582/jsrm.1802005","DOIUrl":"10.46582/jsrm.1802005","url":null,"abstract":"","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"18 2","pages":"27-28"},"PeriodicalIF":1.1,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837697/pdf/jsrm_18_27.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrianto, Budi Susetyo Pikir, I Gde Rurus Suryawan, Hanestya Oky Hermawan, Primasitha Maharany Harsoyo
{"title":"Isolation and Culture of Non-adherent Cells for Cell Reprogramming.","authors":"Andrianto, Budi Susetyo Pikir, I Gde Rurus Suryawan, Hanestya Oky Hermawan, Primasitha Maharany Harsoyo","doi":"10.46582/jsrm.1801004","DOIUrl":"https://doi.org/10.46582/jsrm.1801004","url":null,"abstract":"<p><p>Coronary heart disease (CHD) is a leading cause of death globally, while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration, and CD34<sup>+</sup> cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However, the isolation and culture of non-adherent CD34<sup>+</sup> cells is crucial to obtain adequate cells for high-efficiency genetic modification. This study aimed to investigate the optimal method for isolation and culture of CD34<sup>+</sup> peripheral blood cells using certain culture media. A peripheral blood sample was obtained from a healthy subject and underwent pre-enrichment, isolation, and expansion. The culture was subsequently observed for their viability, adherence, and confluence. Day 0 observation of the culture showed a healthy CD34<sup>+</sup> cell with a round cell shape, without any adherent cells present yet. Day 4 of observation showed that CD34<sup>+</sup> cells within the blood plasma medium became adherent, indicated by their transformations into spindle or oval morphologies. Meanwhile, CD34<sup>+</sup> cells in vitronectin and fibronectin media showed no adherent cells and many of them died. Day 7 observation revealed more adherent CD34<sup>+</sup> cells in blood plasma medium, and which had 75% of confluence. In conclusion, the CD34<sup>+</sup> cells that were isolated using a combination of density and magnetic methods may be viable and adequately adhere in culture using blood plasma medium, but not in cultures using fibronectin and vitronectin.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"18 1","pages":"21-26"},"PeriodicalIF":2.7,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379358/pdf/jsrm_18_21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40636730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}