2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)最新文献

筛选
英文 中文
Atomistic Design of Quantum Biomimetic Electronic Nose 量子仿生电子鼻的原子设计
Swetapadma Sahoo, N. Pandey, D. Saha, S. Ganguly
{"title":"Atomistic Design of Quantum Biomimetic Electronic Nose","authors":"Swetapadma Sahoo, N. Pandey, D. Saha, S. Ganguly","doi":"10.1109/SISPAD.2018.8551661","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551661","url":null,"abstract":"Understanding the enigmatic mechanism of olfaction from a biomimetic technology perspective would be very useful for electronic nose applications. The inelastic tunneling spectroscopy (IETS) of various odorant-receptor systems are simulated for this purpose. An atomistic simulation framework is presented for the same. Analysis of the results offer an insight into how an actual biomimetic sensor system can be made to detect incoming odorant molecules.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122419269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simulations of Self-Heating Effects in SiGe pFinFETs Based on Self-Consistent Solution of Carrier/Phonon BTE Coupled System 基于载流子/声子BTE耦合系统自一致解的SiGe pfinet自热效应模拟
A. Pham, Seonghoon Jin, Yang Lu, Hong-hyun Park, W. Choi, M. A. Pourghaderi, Jongchol Kim, U. Kwon, D. Kim
{"title":"Simulations of Self-Heating Effects in SiGe pFinFETs Based on Self-Consistent Solution of Carrier/Phonon BTE Coupled System","authors":"A. Pham, Seonghoon Jin, Yang Lu, Hong-hyun Park, W. Choi, M. A. Pourghaderi, Jongchol Kim, U. Kwon, D. Kim","doi":"10.1109/SISPAD.2018.8551670","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551670","url":null,"abstract":"Using the in-house simulation tool, self-heating (SH) effects on transport of holes in SiGe pFinFETs are simulated. The coupled system of Boltzmann Transport Equation (BTE) for holes and phonons is solved self-consistently. For transport of holes, the multi subband BTE (MSBTE) is solved for 1D hole gas system, where the subband structure is computed from the 2D $vec{k} cdot vec{p}$ Schrodinger Equation (SE)/3D Poisson equation (PE) solution. For transport of phonons, the BTE for 4 phonon modes (LA, TA, LO, TO) in 3D $vec{k}$–space is solved based on first order spherical harmonic expansion (SHE) method. This study demonstrates the strong dependence of pMOS SH on Ge content. As Ge mole fraction increases above 0.2, alloy scattering hampers the thermal conductivity by more than one order of magnitude. Combined with boundary scattering and smaller band-gap of SiGe, this effect may pose some alarms on next generation pMOS devices.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124460763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Improved Random Path Length Algorithm for p-i-n and Staircase Avalanche Photodiodes 一种改进的p-i-n和阶梯雪崩光电二极管随机路径长度算法
A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. Menk, C. Nichetti, T. Steinhartova
{"title":"An Improved Random Path Length Algorithm for p-i-n and Staircase Avalanche Photodiodes","authors":"A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. Menk, C. Nichetti, T. Steinhartova","doi":"10.1109/SISPAD.2018.8551751","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551751","url":null,"abstract":"We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and $Al_{x}Ga_{1-x}As$ p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121156262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Efficient Two-Band based Non-Equilibrium Green's Function Scheme for Modeling Tunneling Nano-Devices 基于双波段非平衡格林函数的隧道纳米器件建模方法
H. Carrillo-Nuñez, Jaehyun Lee, S. Berrada, C. Medina-Bailón, M. Luisier, A. Asenov, V. Georgiev
{"title":"Efficient Two-Band based Non-Equilibrium Green's Function Scheme for Modeling Tunneling Nano-Devices","authors":"H. Carrillo-Nuñez, Jaehyun Lee, S. Berrada, C. Medina-Bailón, M. Luisier, A. Asenov, V. Georgiev","doi":"10.1109/SISPAD.2018.8551629","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551629","url":null,"abstract":"In this work, we introduce a novel procedure to compute the direct band-to-band tunneling in semiconductor nano-devices by combining the effective mass approximation, the non-equilibrium Greens function technique, and the two-band Flietner model of the imaginary dispersion. The model is first tested on a Si-InAs nanowire p-type tunnel field-effect transistor (p-TFET), showing great accuracy at much less computational cost when compared with atomistic simulations. Secondly, we report a preliminary quantum transport simulation study of the impact of random discrete dopants on Si-InAs nanowire p-TFETs. An ensemble of 63 InAs-Si nanowire TFETs has been simulated, revealing a strong dopant-induced variability.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121193953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
SISPAD 2018 Preface
{"title":"SISPAD 2018 Preface","authors":"","doi":"10.1109/sispad.2018.8551741","DOIUrl":"https://doi.org/10.1109/sispad.2018.8551741","url":null,"abstract":"","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127486154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Influence of Grains and Material Interfaces on Electromigration 晶粒和材料界面对电迁移影响的建模
L. Filipovic, R. L. de Orio
{"title":"Modeling the Influence of Grains and Material Interfaces on Electromigration","authors":"L. Filipovic, R. L. de Orio","doi":"10.1109/SISPAD.2018.8551746","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551746","url":null,"abstract":"We present an efficient approach to properly treat grain boundaries and material interfaces when modeling electromigration in copper nano-interconnects. Our approach uses several spatial material parameters to identify the locations of the grain boundaries and material interfaces during simulation, thereby not requiring the definition of multiple materials or complex meshes and geometrical interfaces. Using this method even very coarse meshes, with a grid spacing twice the size of the thinnest element (the grain boundary thickness), were able to reasonably reproduce the vacancy concentration of thin copper interconnects, including the microstructure. However, using a grid spacing greater than one half the grain boundary thickness resulted in underestimates of the induced stress.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123774009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SISPAD 2018 Sponsors Page SISPAD 2018赞助商页面
{"title":"SISPAD 2018 Sponsors Page","authors":"","doi":"10.1109/sispad.2018.8551668","DOIUrl":"https://doi.org/10.1109/sispad.2018.8551668","url":null,"abstract":"","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131570610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Framework of DFT, Empirical potentials and Full Lattice Atomistic Kinetic Monte-Carlo to Determine Vacancy Diffusion in SiGe 用DFT、经验势和全晶格原子动力学蒙特卡罗综合框架确定SiGe中的空位扩散
Y. Oh, Yumi Park, C. Zechner, I. Martín-Bragado
{"title":"Integrated Framework of DFT, Empirical potentials and Full Lattice Atomistic Kinetic Monte-Carlo to Determine Vacancy Diffusion in SiGe","authors":"Y. Oh, Yumi Park, C. Zechner, I. Martín-Bragado","doi":"10.1109/SISPAD.2018.8551657","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551657","url":null,"abstract":"To simulate the point-defect diffusion in atomic scale, the software platform with a full lattice atomistic kinetic Monte-Carlo (AKMC) capability was developed. In this platform, the theoretical values of migration frequencies and barriers depending on the configuration of the nearest neighbors were automatically calculated by linking the simulator with the density functional theory (DFT) and classical molecular dynamics (CMD) tools. Ge mole fraction dependent diffusivity of a vacancy in SiGe was extracted in this work.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120935262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SISPAD 2018 Index
{"title":"SISPAD 2018 Index","authors":"","doi":"10.1109/sispad.2018.8551732","DOIUrl":"https://doi.org/10.1109/sispad.2018.8551732","url":null,"abstract":"","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123129169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Electron-Electron Scattering on the Carrier Distribution in Semiconductor Devices 电子-电子散射对半导体器件中载流子分布的影响
H. Kosina, M. Kampl
{"title":"Effect of Electron-Electron Scattering on the Carrier Distribution in Semiconductor Devices","authors":"H. Kosina, M. Kampl","doi":"10.1109/SISPAD.2018.8551734","DOIUrl":"https://doi.org/10.1109/SISPAD.2018.8551734","url":null,"abstract":"It is commonly accepted that electron-electron scattering (EES) alters the high-energy tail of the energy distribution function [1] [2], and thus plays an important role in the physically-based modeling of hot carrier degradation [3]. One can distinguish between selfconsistent models which assume the actual or an approximate non-equilibrium distribution for the partner electrons, and non-selfconsistent models which assume an equilibrium distribution for the partner electrons. The latter approach is suitable to describe the interaction of channel hot electrons with a reservoir of cold electrons in the drain region. This case is studied in the present work. We briefly discuss the details about the derivation of the single-particle scattering rate and the implementation in a Monte Carlo simulator for both parabolic bands and full-band structures.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134376322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信