基于载流子/声子BTE耦合系统自一致解的SiGe pfinet自热效应模拟

A. Pham, Seonghoon Jin, Yang Lu, Hong-hyun Park, W. Choi, M. A. Pourghaderi, Jongchol Kim, U. Kwon, D. Kim
{"title":"基于载流子/声子BTE耦合系统自一致解的SiGe pfinet自热效应模拟","authors":"A. Pham, Seonghoon Jin, Yang Lu, Hong-hyun Park, W. Choi, M. A. Pourghaderi, Jongchol Kim, U. Kwon, D. Kim","doi":"10.1109/SISPAD.2018.8551670","DOIUrl":null,"url":null,"abstract":"Using the in-house simulation tool, self-heating (SH) effects on transport of holes in SiGe pFinFETs are simulated. The coupled system of Boltzmann Transport Equation (BTE) for holes and phonons is solved self-consistently. For transport of holes, the multi subband BTE (MSBTE) is solved for 1D hole gas system, where the subband structure is computed from the 2D $\\vec{k} \\cdot \\vec{p}$ Schrodinger Equation (SE)/3D Poisson equation (PE) solution. For transport of phonons, the BTE for 4 phonon modes (LA, TA, LO, TO) in 3D $\\vec{k}$–space is solved based on first order spherical harmonic expansion (SHE) method. This study demonstrates the strong dependence of pMOS SH on Ge content. As Ge mole fraction increases above 0.2, alloy scattering hampers the thermal conductivity by more than one order of magnitude. Combined with boundary scattering and smaller band-gap of SiGe, this effect may pose some alarms on next generation pMOS devices.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulations of Self-Heating Effects in SiGe pFinFETs Based on Self-Consistent Solution of Carrier/Phonon BTE Coupled System\",\"authors\":\"A. Pham, Seonghoon Jin, Yang Lu, Hong-hyun Park, W. Choi, M. A. Pourghaderi, Jongchol Kim, U. Kwon, D. Kim\",\"doi\":\"10.1109/SISPAD.2018.8551670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the in-house simulation tool, self-heating (SH) effects on transport of holes in SiGe pFinFETs are simulated. The coupled system of Boltzmann Transport Equation (BTE) for holes and phonons is solved self-consistently. For transport of holes, the multi subband BTE (MSBTE) is solved for 1D hole gas system, where the subband structure is computed from the 2D $\\\\vec{k} \\\\cdot \\\\vec{p}$ Schrodinger Equation (SE)/3D Poisson equation (PE) solution. For transport of phonons, the BTE for 4 phonon modes (LA, TA, LO, TO) in 3D $\\\\vec{k}$–space is solved based on first order spherical harmonic expansion (SHE) method. This study demonstrates the strong dependence of pMOS SH on Ge content. As Ge mole fraction increases above 0.2, alloy scattering hampers the thermal conductivity by more than one order of magnitude. Combined with boundary scattering and smaller band-gap of SiGe, this effect may pose some alarms on next generation pMOS devices.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用内部仿真工具,模拟了自热(SH)对SiGe pfinfet中空穴输运的影响。空穴和声子的玻尔兹曼输运方程(BTE)耦合系统是自洽求解的。对于空穴输运,求解一维空穴气体体系的多子带BTE (MSBTE),其中子带结构由二维$\vec{k} \cdot \vec{p}$薛定谔方程(SE)/三维泊松方程(PE)解计算。对于声子的输运,基于一阶球谐展开(SHE)方法求解了三维$\vec{k}$ -空间中4种声子模式(LA、TA、LO、TO)的BTE。该研究表明pMOS SH对Ge含量有很强的依赖性。当Ge摩尔分数大于0.2时,合金散射对导热性能的影响大于一个数量级。结合SiGe的边界散射和更小的带隙,这种效应可能会给下一代pMOS器件带来一些警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulations of Self-Heating Effects in SiGe pFinFETs Based on Self-Consistent Solution of Carrier/Phonon BTE Coupled System
Using the in-house simulation tool, self-heating (SH) effects on transport of holes in SiGe pFinFETs are simulated. The coupled system of Boltzmann Transport Equation (BTE) for holes and phonons is solved self-consistently. For transport of holes, the multi subband BTE (MSBTE) is solved for 1D hole gas system, where the subband structure is computed from the 2D $\vec{k} \cdot \vec{p}$ Schrodinger Equation (SE)/3D Poisson equation (PE) solution. For transport of phonons, the BTE for 4 phonon modes (LA, TA, LO, TO) in 3D $\vec{k}$–space is solved based on first order spherical harmonic expansion (SHE) method. This study demonstrates the strong dependence of pMOS SH on Ge content. As Ge mole fraction increases above 0.2, alloy scattering hampers the thermal conductivity by more than one order of magnitude. Combined with boundary scattering and smaller band-gap of SiGe, this effect may pose some alarms on next generation pMOS devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信