Ida K. L. Andersen, Lars O. Dragsted, Jim Rasmussen, Inge S. Fomsgaard
{"title":"Intercropping of <i>Hordeum vulgare</i> L. and <i>Lupinus angustifolius</i> L. causes the generation of prenylated flavonoids in <i>Lupinus angustifolius</i> L.","authors":"Ida K. L. Andersen, Lars O. Dragsted, Jim Rasmussen, Inge S. Fomsgaard","doi":"10.1080/17429145.2023.2255039","DOIUrl":"https://doi.org/10.1080/17429145.2023.2255039","url":null,"abstract":"In agricultural production, intercropping is a widely used system with many benefits. Lupin (Lupinus angustifolius L.) is a legume that contains a large variety of plant secondary metabolites, which have multiple functions in the plant, e.g. signalling, nodulation and stress response. An untargeted metabolomics approach was applied to investigate how the metabolome of lupin was affected by intercropped barley (Hordeum vulgare L.). The only primary metabolite of lupin affected by intercropping was tryptophan. Several secondary metabolites were affected by intercropping in lupin, and five flavonoids were annotated hereof. The flavonoid levels were increased, and tryptophan levels decreased in lupin when intercropped. Two flavonoids are prenylated, and prenylated flavonoids are believed to play a role in the plant’s stress response. Furthermore, flavonoids are involved in plant defence and the nodulation process. Thus the present flavonoids may affect regulation of lupin N2-fixation activity.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135742230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lidia Blanco-Sánchez, Rosario Planelló, Victoria Ferrero, Rafael Fernández-Muñoz, Eduardo de la Peña, Juan Antonio Díaz Pendón
{"title":"More than trichomes and acylsugars: the role of jasmonic acid as mediator of aphid resistance in tomato","authors":"Lidia Blanco-Sánchez, Rosario Planelló, Victoria Ferrero, Rafael Fernández-Muñoz, Eduardo de la Peña, Juan Antonio Díaz Pendón","doi":"10.1080/17429145.2023.2255597","DOIUrl":"https://doi.org/10.1080/17429145.2023.2255597","url":null,"abstract":"ABSTRACT\u0000 This study investigates the impact of priming on the resistance of tomato plants to the potato aphid Macrosiphum euphorbiae, focusing on the role of glandular trichomes. Glandular trichomes are specific hairs that provide protection to tomato plants against herbivorous insects. The experimental priming conducted in this study revealed that prior infestation by Spodoptera littoralis caterpillars increased the plant's resistance against M. euphorbiae, pointing at the jasmonic acid (JA) signaling pathway in regulating this plant-aphid interaction. Glandular trichomes type IV were effective against aphids regardless of the previous infestation. Using JA-deficient tomato (spr2), we observed that M. euphorbiae multiplication increased, while the number of aphids on salicylic -deficient NahG plants was lower than in the wildtype Moneymaker. These findings emphasize the crucial role of the JA signaling pathway in tomato plant resistance to aphids and the importance of glandular trichomes to enhance plant defences against pests.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hidalgo-García, G. Tortosa, Pedro J. Pacheco, Andrew J. Gates, David J. Richardson, E. Bedmar, Lourdes Girard, M. J. Torres, María J. Delgado
{"title":"Rhizobium etli is able to emit nitrous oxide by connecting assimilatory nitrate reduction with nitrite respiration in the bacteroids of common bean nodules","authors":"A. Hidalgo-García, G. Tortosa, Pedro J. Pacheco, Andrew J. Gates, David J. Richardson, E. Bedmar, Lourdes Girard, M. J. Torres, María J. Delgado","doi":"10.1080/17429145.2023.2251511","DOIUrl":"https://doi.org/10.1080/17429145.2023.2251511","url":null,"abstract":"Legumes can contribute to emissions of the potent greenhouse gas nitrous oxide (N 2 O) directly by some rhizobia species that are able to denitrify under free-living conditions and in symbiotic association with the plant. In this study, the capacity of Phaseolus vulgaris - Rhizobium etli symbiosis to emit N 2 O in response to nitrate (NO 3) has been demonstrated for the fi rst time. We found that bacteroidal assimilatory nitrate reductase (NarB) as well as nitrite reductase (NirK) and nitric oxide reductase (cNor) denitrifying enzymes contribute to nitric oxide (NO) and N 2 O formation in nodules. We also show that R. etli NarK is involved in NO 2-extrusion and links NO 3-reduction by NarB in the cytoplasm with NirK and cNor denitri fi cation activities in the periplasm. The knowledge generated in this work will be instrumental for exploring strategies and sustainable practices in agricultural soil management to increase legume crop yield and mitigate greenhouse gas emissions","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45715663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric S. Land, Emma Canaday, Alexander Meyers, Sarah Wyatt, Imara Y. Perera
{"title":"Bridging the gap: parallel profiling of ribosome associated and total RNA species can identify transcriptional regulatory mechanisms of plants in spaceflight","authors":"Eric S. Land, Emma Canaday, Alexander Meyers, Sarah Wyatt, Imara Y. Perera","doi":"10.1080/17429145.2023.2248173","DOIUrl":"https://doi.org/10.1080/17429145.2023.2248173","url":null,"abstract":"As plants are an essential component of sustainable life support systems, long-duration space missions will require a sophisticated understanding of plant adaptations to spaceflight and microgravity. For many years, transcriptional profiling of steady state mRNA abundances has been used as measure of plant adaptations to the space environment. However, measured changes in transcript abundances are often not reflected in corresponding changes in the proteome due regulatory processes governing translation. Translating ribosome affinity purification (TRAP) is a technique which selectively targets ribosome bound mRNAs for isolation and downstream sequencing. Comparing profiles of ribosome associated mRNAs with total mRNAs provides insight into the translatome and may more accurately inform on the cellular responses to the spaceflight environment. Toward that goal, this work describes a methodology developed ahead of the APEx-07 flight mission.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135032992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sicilia, V. Catara, G. Dimaria, E. Scialò, M. Russo, A. Gentile, A. R. Lo Piero
{"title":"Transcriptome analysis of lemon leaves (Citrus limon) infected by Plenodomus tracheiphilus reveals the effectiveness of Pseudomonas mediterranea in priming the plant response to mal secco disease","authors":"A. Sicilia, V. Catara, G. Dimaria, E. Scialò, M. Russo, A. Gentile, A. R. Lo Piero","doi":"10.1080/17429145.2023.2243097","DOIUrl":"https://doi.org/10.1080/17429145.2023.2243097","url":null,"abstract":"ABSTRACT The use of biological control agents (BCAs) to cope with diseases has received considerable attention owing to its high efficiency and environmental safety. The aim of our study was to investigate the potential role of Pseudomonas mediterranea pretreatment in the response of lemon [Citrus limon (L.) Burm. f.] against mal secco, which is a devastating citrus disease caused by the fungus Plenodomus tracheiphilus. RNAseq analysis revealed that the fungus induced marked reprogramming of the transcriptome, but P. mediterranea pretreatment strongly reduced lemon leaf transcriptome modifications and limited the amount of fungal DNA inside the plant tissue. Furthermore, P. mediterranea prevented the downregulation of the genes involved in effector-triggered immunity (ETI) and the deregulation of genes involved in the biosynthesis and perception of the main phytohormones. To the best of our knowledge, this work represents the first report on the analysis of the P. tracheiphilus-lemon plant-BCA interaction at the molecular level.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47641647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nussara Putaporntip, Umaporn Siriwattanakul, Supawadee Phetkhajone, J. Narangajavana, K. Supaibulwatana, A. Pichakum, W. Songnuan
{"title":"Insights into the infection dynamics and interactions between high-virulence and low-virulence isolates of Phytophthora palmivora and durian seedlings","authors":"Nussara Putaporntip, Umaporn Siriwattanakul, Supawadee Phetkhajone, J. Narangajavana, K. Supaibulwatana, A. Pichakum, W. Songnuan","doi":"10.1080/17429145.2023.2236139","DOIUrl":"https://doi.org/10.1080/17429145.2023.2236139","url":null,"abstract":"ABSTRACT Durian (Durio zibethinus L.) is susceptible to Phytophthora palmivora, which causes rot disease, leading to significant yield loss. This study aimed to investigate local defense responses of durian to P. palmivora and compare the infection dynamics of high virulence (HV) and low virulence (LV) isolates. Durian leaves on 1-year-old seedlings were inoculated with mycelial plugs. Symptoms were observed within 24 h. The HV-isolate was more aggressive, leading to larger lesions, earlier and denser colonization, and higher sporulation. P. palmivora lifestyle related gene (PpEF1α, PpHmp1, PpCdc14, and PpOPEL) were expressed at a higher level in HV compared to LV. Local defense response showed intense accumulation of H2O2, with a stronger response to the HV. Callose deposition increased initially but declined after inoculation, with different diameters between isolates, but no significantly different intensity patterns. These findings provide insights into the P. palmivora-durian interaction, with potential applications in improving disease management strategies.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49101510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvadora Navarro-Torre, Sara Ferrario, A. Caperta, G. Victorino, Marion Bailly, Vicelina Sousa, Wanda Viegas, Amaia Nogales
{"title":"Halotolerant endophytes promote grapevine regrowth after salt-induced defoliation","authors":"Salvadora Navarro-Torre, Sara Ferrario, A. Caperta, G. Victorino, Marion Bailly, Vicelina Sousa, Wanda Viegas, Amaia Nogales","doi":"10.1080/17429145.2023.2215235","DOIUrl":"https://doi.org/10.1080/17429145.2023.2215235","url":null,"abstract":"ABSTRACT Salinity is an important problem for agriculture in the Mediterranean area, and thus, it is essential to develop mitigation strategies to reduce its impact. The main objective of this study was to test the effectiveness of halotolerant plant growth-promoting bacteria (H-PGPB) in improving grapevine salt stress tolerance. Grapevines grafted onto a salt-sensitive rootstock were inoculated with a consortium of H-PGPB. The substrate of half of the plants of each treatment was salinized up to 2 dS m−1. Plants grew for six days under these conditions, and afterward, NaCl was removed to assess plant recovery through growth, physiology, and canopy temperature measurements. Inoculation with H-PGPB had a positive effect on plant physiology, but after salt treatment, grapevines stopped their photosynthetic metabolism, leading to severe defoliation. Remarkably, after salt stress removal, inoculated plants re-sprouted faster, demonstrating that H-PGPB inoculation could be a good practice to increase vineyard resilience to salt stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43640185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanyue Hui, Yamei Zhang, Rong Jia, Yue Hu, Wenjing Wang, Yi Wang, Yong Wang, Yerong Zhu, Lin Yang, Beibei Xiang
{"title":"Metabolomic analysis reveals responses of Spirodela polyrhiza L. to salt stress","authors":"Tanyue Hui, Yamei Zhang, Rong Jia, Yue Hu, Wenjing Wang, Yi Wang, Yong Wang, Yerong Zhu, Lin Yang, Beibei Xiang","doi":"10.1080/17429145.2023.2210163","DOIUrl":"https://doi.org/10.1080/17429145.2023.2210163","url":null,"abstract":"ABSTRACT Duckweeds are particularly well suited for studies needing high output because of their quick growth and reproduction. Due to their starches and flavonoids, the potential for using duckweed as a source of food, medicine or feed has been studied. Through LC-MS analysis, 195 differential metabolites, including organic acids, phenolics, and other categories, were screened in Spirodela polyrhiza L. exposed to 4 days of NaCl. S. polyrhiza contained higher amounts of oxidized glutathione, jasmonates, and phenolic compounds but lower amounts of citric acid and glutathione under salt stress. Additionally, after 4 days of salt stress, there was an increase in the relative expression levels of genes involved in the phenolic biosynthesis pathway. Based on metabolomics, this study provides insight into the mechanism of salt-tolerant by duckweeds, as well as useful information for plant breeders and molecular biologists developing duckweed cultivars with salt tolerance and high phenolic content. Key policy highlights A total of 195 differential metabolites were examined in S. polyrhiza under salt stress using LC‒MS analysis. The effects of salt stress on S. polyrhiza metabolic pathways were reported. Under salt stress, the expression of genes involved in the S. polyrhiza phenolic biosynthesis pathway was evaluated.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41678438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Cardoni, L. Olmo-García, Irene Serrano-García, A. Carrasco-Pancorbo, J. Mercado-Blanco
{"title":"The roots of olive cultivars differing in tolerance to Verticillium dahliae show quantitative differences in phenolic and triterpenic profiles","authors":"M. Cardoni, L. Olmo-García, Irene Serrano-García, A. Carrasco-Pancorbo, J. Mercado-Blanco","doi":"10.1080/17429145.2023.2206840","DOIUrl":"https://doi.org/10.1080/17429145.2023.2206840","url":null,"abstract":"ABSTRACT Verticillium wilt of olive (VWO), caused by Verticillium dahliae, is a major concern in many olive-growing countries. An efficient VWO control measure is the use of tolerant/resistant cultivars. Low information is available about olive secondary metabolites and its relationship with VWO tolerance. In this study, a comprehensive metabolic profiling of the roots of six olive cultivars differing in their level of tolerance/susceptibility to VWO was addressed. Potential changes in the metabolite profiles due to the presence of the pathogen were also assessed. A strong relationship between the quantitative basal composition of the root secondary metabolic profile and VWO tolerance/susceptibility of olive varieties was found. Tolerant cultivars showed higher content of secoiridoids, while the susceptible ones presented greater amounts of verbascoside and methoxypinoresinol glucoside. The presence of V. dahliae only caused few significant variations mostly restricted to the earliest times after inoculation. Thus, a rapid activation of biochemical-based root defense mechanisms was observed. Key policy highlights Quantitative differences of secondary metabolites in roots contribute to explain the tolerance/susceptibility of olive cultivars to Verticillium dahliae. Higher basal content of secoiridoids correlate with tolerance, while greater concentration of verbascoside and methoxypinoresinol glucoside seem to be linked to susceptibility. Few alterations are observed in the olive root metabolic profiles in the presence of the pathogen. Changes in the root metabolic profile occur at early times after pathogen inoculation which suggests a rapid activation of a biochemical-based defense response against V. dahliae.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41970604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana
{"title":"Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection","authors":"Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana","doi":"10.1080/17429145.2023.2178680","DOIUrl":"https://doi.org/10.1080/17429145.2023.2178680","url":null,"abstract":"ABSTRACT Considering the more frequent and longer drought events due to climate change, improving plant drought tolerance became a priority. The search for plant growth promoting rhizobacteria (PGPR) able to improve plant drought tolerance has been long addressed, but with inconsistent results. Here, we summarize the PGPR mechanisms that improve plant drought tolerance, identify the pitfalls in current PGPR isolation and selection routines, and discuss the key points to define new strategies to get optimal PGPR for plant drought tolerance. Drought and host genotype impact rhizo-communities, and host-mediated selection strategies may be used to obtain a drought-adapted rhizomicrobiome that can be a source for PGPR isolation. Alternatively, an integrated omics-level analysis can improve our knowledge on the mechanisms of rhizomicrobiome construction, and a targeted approach can be designed, which will be focused on key PGP traits. New strategies to build PGPR consortia for improvement of plant drought tolerance are also suggested.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43180641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}