Eric S. Land, Emma Canaday, Alexander Meyers, Sarah Wyatt, Imara Y. Perera
{"title":"弥合差距:核糖体相关和总RNA物种的平行分析可以识别太空飞行中植物的转录调节机制","authors":"Eric S. Land, Emma Canaday, Alexander Meyers, Sarah Wyatt, Imara Y. Perera","doi":"10.1080/17429145.2023.2248173","DOIUrl":null,"url":null,"abstract":"As plants are an essential component of sustainable life support systems, long-duration space missions will require a sophisticated understanding of plant adaptations to spaceflight and microgravity. For many years, transcriptional profiling of steady state mRNA abundances has been used as measure of plant adaptations to the space environment. However, measured changes in transcript abundances are often not reflected in corresponding changes in the proteome due regulatory processes governing translation. Translating ribosome affinity purification (TRAP) is a technique which selectively targets ribosome bound mRNAs for isolation and downstream sequencing. Comparing profiles of ribosome associated mRNAs with total mRNAs provides insight into the translatome and may more accurately inform on the cellular responses to the spaceflight environment. Toward that goal, this work describes a methodology developed ahead of the APEx-07 flight mission.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"1 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap: parallel profiling of ribosome associated and total RNA species can identify transcriptional regulatory mechanisms of plants in spaceflight\",\"authors\":\"Eric S. Land, Emma Canaday, Alexander Meyers, Sarah Wyatt, Imara Y. Perera\",\"doi\":\"10.1080/17429145.2023.2248173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As plants are an essential component of sustainable life support systems, long-duration space missions will require a sophisticated understanding of plant adaptations to spaceflight and microgravity. For many years, transcriptional profiling of steady state mRNA abundances has been used as measure of plant adaptations to the space environment. However, measured changes in transcript abundances are often not reflected in corresponding changes in the proteome due regulatory processes governing translation. Translating ribosome affinity purification (TRAP) is a technique which selectively targets ribosome bound mRNAs for isolation and downstream sequencing. Comparing profiles of ribosome associated mRNAs with total mRNAs provides insight into the translatome and may more accurately inform on the cellular responses to the spaceflight environment. Toward that goal, this work describes a methodology developed ahead of the APEx-07 flight mission.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2023.2248173\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17429145.2023.2248173","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Bridging the gap: parallel profiling of ribosome associated and total RNA species can identify transcriptional regulatory mechanisms of plants in spaceflight
As plants are an essential component of sustainable life support systems, long-duration space missions will require a sophisticated understanding of plant adaptations to spaceflight and microgravity. For many years, transcriptional profiling of steady state mRNA abundances has been used as measure of plant adaptations to the space environment. However, measured changes in transcript abundances are often not reflected in corresponding changes in the proteome due regulatory processes governing translation. Translating ribosome affinity purification (TRAP) is a technique which selectively targets ribosome bound mRNAs for isolation and downstream sequencing. Comparing profiles of ribosome associated mRNAs with total mRNAs provides insight into the translatome and may more accurately inform on the cellular responses to the spaceflight environment. Toward that goal, this work describes a methodology developed ahead of the APEx-07 flight mission.
期刊介绍:
Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.