Renato P. Orenha, Salvador B. Ramos, Maria L. L. Natal, Márcio H. A. Gomes, Alvaro Muñoz-Castro, Letícia M. P. Madureira, Giovanni F. Caramori, Maurício J. Piotrowski, Renato L. T. Parreira
{"title":"Rational design of promising candidates for photoactive layer in polymer solar cells: Insights from computation","authors":"Renato P. Orenha, Salvador B. Ramos, Maria L. L. Natal, Márcio H. A. Gomes, Alvaro Muñoz-Castro, Letícia M. P. Madureira, Giovanni F. Caramori, Maurício J. Piotrowski, Renato L. T. Parreira","doi":"10.1002/poc.4586","DOIUrl":"10.1002/poc.4586","url":null,"abstract":"<p>The design of organic solar cells, OSCs, requests a more efficient configuration of photoactive layers composed of p-type (quinoxaline, Qx) and n-type (naphthalene diimide, NDI) semiconductors that enable light harvesting along with a high-power conversion efficiency. Here, Qx-(phenyl or Ph) and NDI structures have been modulated using both electron withdrawing (EWG) and electron donating (EDG) groups such as −F, −NHCOCH<sub>3</sub>, −OCH<sub>3</sub>, −OH, −CHO, −COOCH<sub>3</sub>, −COOH, −CN, −SO<sub>3</sub>H, and −NO<sub>2</sub>, aiming to design an effective photoactive p-n layer. The HOMO-LUMO gap of Qx-Ph can be tuned to the visible light spectrum by the addition of EWG in the Qx ring (decreasing the LUMO energy) and by EDG in the Ph ring (increasing the HOMO energy). The analyzed complexes show key electronic properties in organic solar cells with large power conversion efficiency. Descriptive data analysis suggests that the magnitude of the non-covalent interactions in donor\u0000<span></span><math>\u0000 <mi>…</mi></math> acceptor (D\u0000<span></span><math>\u0000 <mi>…</mi></math> A) complexes is expected to play a role in the efficiency of OSCs. The results will contribute to a more effective design of the photoactive layer in OSCs.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight into acrolein activation by P/B intramolecular frustrated Lewis pairs","authors":"Swapan Sinha, Subhra Das, Santanab Giri","doi":"10.1002/poc.4588","DOIUrl":"10.1002/poc.4588","url":null,"abstract":"<p>The study investigates the reactivity of a cyclic five-membered intramolecular P/B frustrated Lewis pair towards acrolein through a cycloaddition reaction. Intrinsic reaction coordinate (IRC) calculations suggest the single-step mechanism. It has been observed that the cycloaddition reaction occurs through a concerted mechanism in both the presence and absence of the catalyst. Analysis of reaction force and reaction electronic flux provides valuable information about the total work required and electronic activity along the IRC. Additionally, natural bonding orbital (NBO) analyses enrich the understanding of the mechanism in terms of the electron transfer process during the chemical reaction.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical study on oxidation mechanism of fluorescent probe, coumarin-7-pinacolboronate by various reactive oxygen species","authors":"Yujie Guo, Yan Leng, Hongbo Liu, Chun-Gang Min, Ai-Min Ren, Qinhong Yin","doi":"10.1002/poc.4585","DOIUrl":"10.1002/poc.4585","url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as relatively stable reactive oxygen species gains considerable attention because it can regulate physiological and pathological processes. In order to better detect H<sub>2</sub>O<sub>2</sub>, fluorescent probes were widely applied. Over the past 20 years, a great deal of boronate-based fluorescent molecular probes appeared due to relatively simple oxidation reaction. However, the reaction mechanisms that boronate derivatives were converted into fluorescent product by H<sub>2</sub>O<sub>2</sub> are poorly studied. In this paper, taking coumarin-7-pinacolboronate (CBU) as an example, the oxidation mechanism of boronate-based probes by various reactive oxygen species was studied by theoretical calculations. The results found that (1) the chemical reaction mechanisms are nearly identical for the reactions of CBU with hydrogen peroxide, hypochlorous acid, peroxynitrite, and tyrosine hydroperoxide, respectively. (2) There is not radical intermediate during the reaction. (3) The different reactive oxygen species has a strong influence on rate limiting step and reaction rate.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new method for determining the intrinsic resistance energy of H-atom transfer reaction and structure–activity relationship of H-donating ability","authors":"Yan-Hua Fu, Fang Wang, Zhongyuan Zhou, Liguo Yang, Guang-Bin Shen, Xiao-Qing Zhu","doi":"10.1002/poc.4584","DOIUrl":"10.1002/poc.4584","url":null,"abstract":"<p>The intrinsic resistance energy Δ<i>G</i><sup>≠</sup><sub>XH/X</sub> of H-donor XH in hydrogen atom transfer (HAT) reaction is usually used to evaluate the kinetic H-donating ability. In this article, a new method for determining Δ<i>G</i><sup>≠</sup><sub>XH/X</sub> of H-donor in HAT reaction was proposed by the definition of thermo-kinetic parameter Δ<i>G</i><sup>≠o</sup> (XH) = 1/2[Δ<i>G</i><sup>≠</sup><sub>XH/X</sub> + Δ<i>G</i><sup>o</sup> (XH)]. Δ<i>G</i><sup>≠o</sup> (XH) is the characteristic physical parameter of XH to describe the H-donating ability in a chemical reaction during a certain reaction time, Δ<i>G</i><sup>o</sup> (XH) is the bond dissociation free energy. The kinetic studies of HATs between 20 alcohols, ethers, alkanes and amines (XH) with cumyloxyl radical [PhC (CH<sub>3</sub>)<sub>2</sub>O<sup>•</sup>, CumO<sup>•</sup>] were researched, and Δ<i>G</i><sup>o</sup> (XH), Δ<i>G</i><sup>≠</sup><sub>XH/X</sub>, and Δ<i>G</i><sup>≠o</sup> (XH) were used to investigate the H-donating abilities of the studied substrates in thermodynamics, kinetics, and HAT reaction. The effect of structures of XH on these three parameters, the structure–activity relationship, such as the influence of electronic, steric, polar and stereoelectronic effects of substituents, heteroatoms insertion in cycloalkanes, and <i>cis–trans</i> configurational isomerism on the H-donating abilities were discussed in detail. This study not only provides a new method for determining Δ<i>G</i><sup>≠</sup><sub>XH/X</sub> but also systematically studies the factors affecting the H-donating ability, laying a foundation for the selection, design, and synthesis of more efficient antioxidants.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqiang Liu, Ligang Han, Xiali Wang, Yi Wang, Yingmin Hou
{"title":"Electronegativity effect on the ESIPT process of 4′-N,N-dimethylamino-3-hydroxyflavone (DMA3HF) and its derivatives","authors":"Zhiqiang Liu, Ligang Han, Xiali Wang, Yi Wang, Yingmin Hou","doi":"10.1002/poc.4583","DOIUrl":"10.1002/poc.4583","url":null,"abstract":"<p>4′-N,N-dimethylamino-3-hydroxyflavone (DMA3HF) has antioxidant activity and excited state proton transfer (ESIPT) property. In this study, the influence of electronegativity on the ESIPT process has been studied by DFT/TD-DFT methods. Except DMA3HF, the substitutes of S and Se have been designed. The analysis of main bond parameters, infrared vibration spectra, and reduced density gradient function shows that the reduction of atomic electronegativity could promote the ESIPT process. Dihedral angle, frontier molecular orbitals and hole-electron analysis indicate that the twisted intramolecular charge transfer (TICT) process has been enhanced by the decreasing electronegativity. The results show that the decrease of atomic electronegativity is beneficial to TICT and ESIPT processess.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-Hua Fu, Kai Wang, Liguo Yang, Guang-Bin Shen, Xiao-Qing Zhu
{"title":"Effect of N, S atoms on the mechanisms of H-transfer for five-membered nitrogen-containing heterocycles","authors":"Yan-Hua Fu, Kai Wang, Liguo Yang, Guang-Bin Shen, Xiao-Qing Zhu","doi":"10.1002/poc.4582","DOIUrl":"10.1002/poc.4582","url":null,"abstract":"<p>As the mechanisms of the hydride transfer reaction between 7,8-dihydro-9-methylcaffeine (CAFH) with <i>N</i>-methylacridinium (AcrH<sup>+</sup>ClO<sub>4</sub><sup>-</sup>) and hydrogen atom transfer (HAT) reaction between 2,3-dihydrobenzo-imidazoles (BIH) with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH<sup>•</sup>) were researched to both be induced by electron transfer, the reaction mechanisms of 2,3-dihydrobenzo-thiazoles (BTH) with these two substrates were studied. The thermodynamic analysis platforms were used to judge the mechanisms, and the mechanisms of these two reactions were not the same with CAFH and BIH as the <i>E</i><sub>ox</sub> (BTH) value was more positive than CAFH and BIH. A new method for inferring the reaction mechanism was proposed using the kinetic equation Δ<i>G</i><sup>≠</sup><sub>XH/Y</sub> = Δ<i>G</i><sup>≠o</sup> (XH) + Δ<i>G</i><sup>≠o</sup>(Y) and thermo-kinetic parameter Δ<i>G</i><sup>≠o</sup>. The HAT reaction mechanisms between BTH with DPPH<sup>•</sup> and <sup>t</sup>Bu<sub>3</sub>PhO<sup>•</sup> were researched by Δ<i>G</i><sup>≠o</sup><sub>HD</sub>. As the Δ<i>G</i><sup>≠o</sup> (BTH) values in these two reactions were similar; hence, the rate determining steps of them were both HATs as the Δ<i>G</i><sup>≠o</sup><sub>HD</sub>(Y) values of DPPH<sup>•</sup> and <sup>t</sup>Bu<sub>3</sub>PhO<sup>•</sup> used for determining Δ<i>G</i><sup>≠o</sup> (BTH) were both in HAT reactions. The HAT reaction mechanisms between BIH with <sup>t</sup>Bu<sub>3</sub>PhO<sup>•</sup> were also researched by thermodynamic analysis platform and kinetic isotope effect (KIE = 3.99), which confirmed that the rate determining step of BIH/<sup>t</sup>Bu<sub>3</sub>PhO<sup>•</sup> was indeed HAT. The H-donating ability of BIH and BTH was compared by Δ<i>G</i><sup>≠o</sup><sub>HD</sub>. From BIH to BTH, the substitution of <i>N</i> by <i>S</i> not only greatly reduces the thermodynamic electron donating and H-donating capacity of the compound but also increases the H-donating ability in kinetics and HAT reaction.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cooperativity and topological hydrogen bonding in aromatic diol complexes","authors":"Robert E. Rosenberg, John S. Lomas","doi":"10.1002/poc.4578","DOIUrl":"10.1002/poc.4578","url":null,"abstract":"<p>Complexes of three aromatic diols, catechol, naphthalene-1,8-diol, and fluorene-4,5-diol, with a series of hydrogen bond acceptors (HBAs) that have oxygen, nitrogen, and sulfur acceptor atoms, have been studied by density functional theory (DFT) at the B3LYP/6-311+G(d,p) level. Binding energies, geometries, infrared spectroscopic (IR) frequencies, nuclear magnetic resonance (NMR) shifts, and measures of the electron density distribution from the Quantum Theory of Atoms in Molecules (QTAIM) are evaluated and compared with data for the corresponding monohydroxy compounds (monols), phenol, naphth-1-ol, and fluorene-4-ol, in order to assess the importance of cooperativity between intramolecular and intermolecular hydrogen bonding. All measures for all complexes show positive cooperativity whereby both the intermolecular and intramolecular hydrogen bonds are strengthened upon complexation. Cooperativity is weak for catechol and strong for the other two diols and, for all diols, increases with the hydrogen bond basicity of the acceptor. Correlations of IR and NMR metrics against binding energies for a single HBA and all six monols and diols are excellent, but attempts to correlate the same metrics for all HBAs and a single donor are frustrated by differences in intermolecular hydrogen bonding, depending notably on the identity of the acceptor atom in the HBA. Atom–atom interaction energies, calculated by the Interacting Quantum Atoms approach, are used to discuss the covalency of both types of hydrogen bond.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Nadeem Arshad, Muhammad Khalid, Umme Hani, Abdullah M. Asiri
{"title":"Peripheral structural modification for devising push–pull strategy into 1,3,5-triaryl-2-pyrazoline-based compounds for nonlinear optical insights via density functional theory approach","authors":"Muhammad Nadeem Arshad, Muhammad Khalid, Umme Hani, Abdullah M. Asiri","doi":"10.1002/poc.4577","DOIUrl":"10.1002/poc.4577","url":null,"abstract":"<p>The nonlinear optical (NLO) insights of triarylpyrazoline-based (Z)-2-(2-((7-(4-(5-[2,4-dimethylphenyl]-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenyl)-4,4,9,9-tetramethyl-4,4a,9,10a-tetrahydro-s-indaceno[1,2-b:5,6-b′]dithiophen-2-yl)methylene)-3-oxo-2,3-dihydro-1H-inden-1-yl)malononitrile (<b>PR</b>) and its derivatives <b>P1</b>–<b>P7</b> were explored in this study. The compounds: <b>PR</b> and <b>P1</b>–<b>P7</b> having donor–π–acceptor configurations and M06/6-311G(d,p) functional was selected to inquire the dipole moment (<i>μ</i>), linear polarizability (<i>α</i>), first hyperpolarizability (<i>β</i>), and second hyperpolarizability (<i>γ</i>). The findings of perturbed Kohn–Sham relations were deciphered to derive charge density of the molecules. The optical analysis was performed in gaseous phase and their findings were observed in 544.2–697.1 nm range. Moreover, the natural bond orbitals, frontier molecular orbitals, density of state, and transition density matrices for the aforesaid compounds were also calculated at aforesaid level. Global reactivity parameters of <b>PR</b> and <b>P1</b>–<b>P7</b> were analyzed by using highest occupied molecular orbital–lowest unoccupied molecular orbital energies. Overall, all above-mentioned findings revealed significant optical nonlinear response in these pyrazoline-based scaffold (<b>PR</b> and <b>P1</b>–<b>P7</b>). However, among all the compounds, <b>P3</b> has shown the highest nonlinearity with maximum <i>μ</i><sub><i>tot</i></sub>, <<i>α</i>>, <i>β</i><sub><i>tot</i></sub>, and <i>γ</i><sub><i>tot</i></sub> values at 19.4 <i>D</i>, 1.78 × 10<sup>−22</sup>, 2.57 × 10<sup>−27</sup>, and 3.13 × 10<sup>−32</sup> <i>a.u</i>., respectively. Hence, the current computational study might prove to be fruitful for the exploration of proficient NLO materials for optoelectronic devices.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diels–Alder cycloadditions of fullerene: Advances in mechanistic theory","authors":"Hong-Yan Jiao, Chun-Xiang Li, Jun-Ru He, Jia-Li Peng, Pei-Ke Jia, Bin-Bin Xie, Cheng-Xing Cui","doi":"10.1002/poc.4579","DOIUrl":"10.1002/poc.4579","url":null,"abstract":"<p>Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (<b>DA</b>) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the <b>DA</b> cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C<sub>60</sub> and C<sub>70</sub>), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsvetina D. Cherneva, Mina M. Todorova, Rumyana I. Bakalska, Ivan G. Shterev, Ernst Horkel, Vassil B. Delchev
{"title":"Excited-state tautomerization of cytidine in water solution when exposed to UVC light","authors":"Tsvetina D. Cherneva, Mina M. Todorova, Rumyana I. Bakalska, Ivan G. Shterev, Ernst Horkel, Vassil B. Delchev","doi":"10.1002/poc.4576","DOIUrl":"10.1002/poc.4576","url":null,"abstract":"<p>The irradiation of water solution of cytidine with UVC light showed that the compound participates in a tautomerism following the kinetics of a first-order reaction. The PIDA mechanism showed that the proton detachments in the tautomers of cytidine occur through the repulsive <sup>1</sup>πσ* excited states and lead to conical intersections S<sub>0</sub>/S<sub>1</sub>, whose structures were optimized. More probable is the IRC mechanism, which proceeds along <sup>1</sup>nπ* excited state reaction paths. This mechanism includes a water molecule as a catalyst, which assists the phototransformation of amino-oxo tautomer of cytidine into imino-hydroxy one.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}