Journal of Plant Nutrition and Soil Science最新文献

筛选
英文 中文
Effects of Elevated Atmospheric CO2 Concentration on Growth, Grain Yield and Grain Macronutrient Concentrations of Wheat Under Different K Supply 不同钾供应下大气CO2浓度升高对小麦生长、产量和大量养分浓度的影响
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-04-13 DOI: 10.1002/jpln.12002
Emmanuel Chakwizira, Mitchell Andrews, Edmar Teixeira, Derrick Moot
{"title":"Effects of Elevated Atmospheric CO2 Concentration on Growth, Grain Yield and Grain Macronutrient Concentrations of Wheat Under Different K Supply","authors":"Emmanuel Chakwizira,&nbsp;Mitchell Andrews,&nbsp;Edmar Teixeira,&nbsp;Derrick Moot","doi":"10.1002/jpln.12002","DOIUrl":"https://doi.org/10.1002/jpln.12002","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Atmospheric carbon-dioxide concentration ([CO<sub>2</sub>]) is increasing rapidly, but its interactions with potassium (K) fertiliser on wheat growth, grain yield and quality are not well understood.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>We investigated the effects of ambient CO<sub>2</sub> (aCO<sub>2</sub>, approx. 415 ppm) and elevated CO<sub>2</sub> (eCO<sub>2</sub>, 760 ppm) on these growth parameters under optimum (2.01 mol m<sup>−3</sup>) and growth limiting (50 mmol m<sup>−3</sup>) K supply in controlled environment chambers.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Potassium limitation decreased total biomass at anthesis and maturity by approx. 13% and grain yield by 7.4%. The decreased grain yield was linked to decreased grain number. Grain K, P and S concentrations decreased by 6.5%–20.6%, under K deficiency, whereas Ca concentration increased by 8.0% and N and Mg concentrations were unaffected. These changes were closely correlated with changes in total aboveground nutrient accumulation, which were interpreted as changes in nutrient uptake. However, nutrient harvest index (NuHI) changed little with K supply. Under e[CO<sub>2</sub>], plant dry weight at anthesis, root + straw dry weight at maturity and grain yield were respectively 33.1%, 23.9% and 9.7% greater than at a[CO<sub>2</sub>]. The increase in yield was linked to an increase in thousand grain weight. Grain macronutrient concentrations (except P) decreased by 6.38%–16.0% with e[CO<sub>2</sub>]. Total aboveground macronutrient accumulation and NuHIs were unaffected by CO<sub>2</sub> supply, except for KHI, which decreased with increasing [CO<sub>2</sub>].</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>It is concluded that uptake of nutrients and their translocation within the plant were not inhibited by eCO<sub>2</sub>, and decreased grain macronutrient concentrations were attributed to nutrient dilution due to increased C fixation relative to nutrient uptake.</p>\u0000 </section>\u0000 </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 3","pages":"473-481"},"PeriodicalIF":2.6,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.12002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impressum: J. Plant Nutr. Soil Sci. 2/2025 芋:J.植物营养学。土壤科学2/2025
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-04-07 DOI: 10.1002/jpln.202570023
{"title":"Impressum: J. Plant Nutr. Soil Sci. 2/2025","authors":"","doi":"10.1002/jpln.202570023","DOIUrl":"https://doi.org/10.1002/jpln.202570023","url":null,"abstract":"&lt;p&gt;ISSN 1436–8730 (print)&lt;/p&gt;&lt;p&gt;ISSN 1522–2624 (online)&lt;/p&gt;&lt;p&gt;© 2025 Wiley-VCH GmbH&lt;/p&gt;&lt;p&gt;Hermann Jungkunst (Soil Science),&lt;/p&gt;&lt;p&gt;Karl H. Mühling (Plant Nutrition)&lt;/p&gt;&lt;p&gt;Wiley-VCH GmbH, Boschstraße 12,&lt;/p&gt;&lt;p&gt;D-69469 Weinheim, Germany&lt;/p&gt;&lt;p&gt;E-mail: &lt;span&gt;[email protected]&lt;/span&gt;&lt;/p&gt;&lt;p&gt;Tel: +49 (0)6201 6060&lt;/p&gt;&lt;p&gt;Aptara, India&lt;/p&gt;&lt;p&gt;Printed in Germany by pva, Druck und Medien-Dienstleistungen GmbH, Landau.&lt;/p&gt;&lt;p&gt;&lt;/p&gt;&lt;p&gt;Printed on acid-free paper&lt;/p&gt;&lt;p&gt;Sigrid Mehren&lt;/p&gt;&lt;p&gt;(E-mail: &lt;span&gt;[email protected]&lt;/span&gt;)&lt;/p&gt;&lt;p&gt;Bettina Loycke&lt;/p&gt;&lt;p&gt;(E-mail: &lt;span&gt;[email protected]&lt;/span&gt;)&lt;/p&gt;&lt;p&gt;For submission instructions, subscription and all other information visit: www.plant-soil.com&lt;/p&gt;&lt;p&gt;Journal of Plant Nutrition and Soil Science is published in 6 issues per year. Institutional subscription prices for 2025 are:&lt;/p&gt;&lt;p&gt;Print &amp; Online: US$ 1944 (US and Rest of World), € 1484 (Europe), £ 996 (UK). Print only: US$ 1806 (US and Rest of World), € 1378 (Europe), £ 926 (UK). Online only: US$ 1731 (US and Rest of World), € 1321 (Europe), £ 887 (UK). Prices are exclusive of tax. Asia-Pacific GST, Canadian GST/HST and European VAT will be applied at the appropriate rates. For more information on current tax rates, please go to https://onlinelibrary.wiley.com/library-info/products/price-lists/payment. The institutional price includes online access to the current and all online backfiles for previous 5 years, where available. For other pricing options, including access information and terms and conditions, please visit https://onlinelibrary.wiley.com/library-info/products/price-lists. Terms of use can be found here: https://onlinelibrary.wiley.com/library-info/products/price-lists/title-by-title-terms-and-conditions.&lt;/p&gt;&lt;p&gt;Where the subscription price includes print issues and delivery is to the recipient's address, delivery terms are Delivered at Place (DAP); the recipient is responsible for paying any import duty or taxes. Title to all issues transfers Free of Board (FOB) our shipping point, freight prepaid.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Claims for Missing or Damaged Print Issues&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Our policy is to replace missing or damaged copies within our reasonable discretion, subject to print issue availability, and subject to the terms: found at Section V, Part C at https://onlinelibrary.wiley.com/library-info/products/price-lists/title-by-title-terms-and-conditions#print-subscriptions&lt;/p&gt;&lt;p&gt;Journal of Plant Nutrition and Soil Science (ISSN 1436–8730), is published 6 times a year. US mailing agent: SPP, Po Box 437, Emigsville, PA 17318. Periodicals postage paid at Emigsville PA USA.&lt;/p&gt;&lt;p&gt;Postmaster: Send all address changes to Journal of Plant Nutrition and Soil Science, Wiley Periodicals LLC, C/O The Sheridan Press, PO Box 465, Hanover, PA 17331 USA.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Journal Customer Services&lt;/b&gt;: For ordering information, claims and any enquiry concerning your journal subscription please visit our Online Customer Help at https://wolsupport.wiley.com/s/contactsupport or contact your neares","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 2","pages":"170"},"PeriodicalIF":2.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202570023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board: J. Plant Nutr. Soil Sci. 2/2025 编委会:J. Plant nur。土壤科学2/2025
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-04-07 DOI: 10.1002/jpln.202570022
{"title":"Editorial Board: J. Plant Nutr. Soil Sci. 2/2025","authors":"","doi":"10.1002/jpln.202570022","DOIUrl":"https://doi.org/10.1002/jpln.202570022","url":null,"abstract":"","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 2","pages":"169"},"PeriodicalIF":2.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202570022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: J. Plant Nutr. Soil Sci. 2/2025 封面图片:J. Plant nur。土壤科学2/2025
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-04-07 DOI: 10.1002/jpln.202570021
{"title":"Cover Picture: J. Plant Nutr. Soil Sci. 2/2025","authors":"","doi":"10.1002/jpln.202570021","DOIUrl":"https://doi.org/10.1002/jpln.202570021","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 2","pages":"167"},"PeriodicalIF":2.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202570021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: J. Plant Nutr. Soil Sci. 2/2025 内容:J.植物营养。土壤科学2/2025
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-04-07 DOI: 10.1002/jpln.202570025
{"title":"Contents: J. Plant Nutr. Soil Sci. 2/2025","authors":"","doi":"10.1002/jpln.202570025","DOIUrl":"https://doi.org/10.1002/jpln.202570025","url":null,"abstract":"","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 2","pages":"368"},"PeriodicalIF":2.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202570025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operational Soil Warming by Underground Transmission Lines Impacts on Soil Microorganisms and Related Metabolic Activities 地下输电线路经营性土壤变暖对土壤微生物及其代谢活动的影响
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-03-27 DOI: 10.1002/jpln.202400554
Christoph Emmerling, Maren Herzog, Celine Hoffmann, Benjamin Schieber
{"title":"Operational Soil Warming by Underground Transmission Lines Impacts on Soil Microorganisms and Related Metabolic Activities","authors":"Christoph Emmerling,&nbsp;Maren Herzog,&nbsp;Celine Hoffmann,&nbsp;Benjamin Schieber","doi":"10.1002/jpln.202400554","DOIUrl":"https://doi.org/10.1002/jpln.202400554","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>During operation, underground transmission lines (UTLs) emit heat leading to soil warming, especially of the subsoil within the cable trench. This fundamentally changes the natural vertical temperature gradient in soil and the environment of microorganisms and may contribute to the variations in microbe community composition, microbial biomass, and microbial, and enzyme activities. Along with this, N-transformation could result in environmental and groundwater pollution by nitrate-N.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>The aim of the study was to decode the impact of operational (sub)soil warming by UTL on soil microorganisms and their metabolic activities specifically in the subsoil.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>At four study sites along an existing 320 kV UTL near Aachen, Germany, soils were sampled from topsoil to subsoil at 120 cm depths from UTL and control sites. A supplemental laboratory experiment was established to investigate soil samples from the entire soil at specific temperature and moisture conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>UTL operation resulted in low (0.6<i>K</i>) to moderate (1.7<i>K</i>) soil warming in topsoil and subsoil, respectively, which partly increased soil DNA content and microbial biomass, abundance of soil bacteria, and metabolic and enzyme activities, especially in subsoil samples. For example, in the topsoil soil, microbial biomass was 13% higher in UTL relative to control and increased extraordinarily by 35%–37% in the subsoil. The abundance of soil bacteria was as well enhanced, but no effect was found for <i>amoA</i> copy numbers. Total Nmin contents were lower in UTL compared to control sites indicating that probably N uptake by vegetation was as well increased.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>In prospect of the imminent grid expansion of extra-high voltage transmission lines, there was substantial evidence that the operation of underground cables will not have any critical impact on soil microorganisms and their metabolic activities.</p>\u0000 </section>\u0000 </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 3","pages":"464-472"},"PeriodicalIF":2.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202400554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lentils can Absorb Amino Acids as a Nitrogen Source Supporting Early Growth 小扁豆可以吸收氨基酸作为氮源,支持早期生长
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-03-27 DOI: 10.1002/jpln.202400504
Alex A. Kröper, Sabine Zikeli, Monika A. Wimmer, Christian Zörb
{"title":"Lentils can Absorb Amino Acids as a Nitrogen Source Supporting Early Growth","authors":"Alex A. Kröper,&nbsp;Sabine Zikeli,&nbsp;Monika A. Wimmer,&nbsp;Christian Zörb","doi":"10.1002/jpln.202400504","DOIUrl":"https://doi.org/10.1002/jpln.202400504","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Lentils (<i>Lens culinaris</i> Medik.) are a valuable crop due to their high nutritional content, low environmental impact, and nitrogen-fixing ability via rhizobacteria. Early in development, before this symbiosis is established, lentils require external nitrogen, typically supplied through fertilizers or already present in soils.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>This study explores whether lentils can utilize amino acids as a nitrogen source and how amino acid supplementation affects growth and nitrate uptake.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The findings show that lentils can absorb amino acids from soil, with no adverse effects on growth compared to mineral N fertilizers. The amino acid patterns show only slight changes in individual amino acids. NPF/NRT1, NRT2, AMT2, and DUR3 were expressed in all treatments in root tissue. LHT1 plays a minor role in the distribution of N in the shoots of lentil plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Although amino acid uptake is less efficient than that of nitrate, it may still benefit young plants in organic farming until rhizobacterial symbiosis is established.</p>\u0000 </section>\u0000 </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 3","pages":"456-463"},"PeriodicalIF":2.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202400504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Biodegradable maleic–itaconic polymer-coated phosphatic fertilizer improved phosphorous recovery in calcareous soil” 对“可生物降解的雄性-衣康聚合物包膜磷肥提高钙质土壤中磷的恢复”的更正
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-03-25 DOI: 10.1002/jpln.202570024
{"title":"Correction to “Biodegradable maleic–itaconic polymer-coated phosphatic fertilizer improved phosphorous recovery in calcareous soil”","authors":"","doi":"10.1002/jpln.202570024","DOIUrl":"https://doi.org/10.1002/jpln.202570024","url":null,"abstract":"<p>Khalid, M., Niazi, M. B. K., Haider, G. Jahan, Z., Zia, M., Ahmad, R., Hayat, A. (2024). Biodegradable maleic–itaconic polymer-coated phosphatic fertilizer improved phosphorous recovery in calcareous soil. Journal of Plant Nutrition and Soil Science, 187, 415–425. https://doi.org/10.1002/jpln.202300197</p><p>Tariq Shah has been removed from the list of authors. The United States Department of Agriculture (USDA) is listed as an affiliation of one of the authors of this article. However, USDA has notified us that the author, Tariq Shah, was never affiliated with the United States Department of Agriculture's Plant Science Research Unit, as claimed in the authorship credits nor was the article supported, reviewed or endorsed at any time by the USDA. Therefore, we are correcting the article at the request of the USDA.</p><p>We apologize for this error.</p>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 2","pages":"366"},"PeriodicalIF":2.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202570024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Soil Structure on the Growth of Rice Roots 土壤结构对水稻根系生长的影响
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-03-24 DOI: 10.1002/jpln.202400493
Md. Dhin Islam, Adam H. Price, Paul D. Hallett
{"title":"Effects of Soil Structure on the Growth of Rice Roots","authors":"Md. Dhin Islam,&nbsp;Adam H. Price,&nbsp;Paul D. Hallett","doi":"10.1002/jpln.202400493","DOIUrl":"https://doi.org/10.1002/jpln.202400493","url":null,"abstract":"<p>Soil pore structure has a large impact on plant root architecture, but it is difficult to study due to secondary impacts from bulk density, carbon, nutrients, and other properties. Here, we isolated soil pore structure by forming controlled soil structures in repacked columns. To generate a non-structured treatment, sieved soil was packed to 1.3 g cm<sup>−3</sup> bulk density. A structured treatment used the same sieved soil that was first compacted, then broken apart into artificial soil aggregates and packed to the same bulk density. Rice seedlings had greater total root length (27%), fine root length and number, root surface area (22%), and tips number (41%), but 20% less root dry mass, in non-structured compared to structured soil. This study isolated how soil structure affects the growth and architecture of rice roots for soils at the same bulk density.</p>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 3","pages":"402-407"},"PeriodicalIF":2.6,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202400493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Oxytetracycline on Molybdenum Adsorption at the Hematite–Water Interface: Insights From Macroscopic and in Situ ATR-FTIR Study 土霉素对赤铁矿-水界面钼吸附的影响:来自宏观和原位ATR-FTIR研究的见解
IF 2.6 3区 农林科学
Journal of Plant Nutrition and Soil Science Pub Date : 2025-03-23 DOI: 10.1002/jpln.202400395
Christopher O. Anuo, Sudipta Rakshit, Michael E. Essington, Michael Kaiser
{"title":"Effect of Oxytetracycline on Molybdenum Adsorption at the Hematite–Water Interface: Insights From Macroscopic and in Situ ATR-FTIR Study","authors":"Christopher O. Anuo,&nbsp;Sudipta Rakshit,&nbsp;Michael E. Essington,&nbsp;Michael Kaiser","doi":"10.1002/jpln.202400395","DOIUrl":"https://doi.org/10.1002/jpln.202400395","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Veterinary antibiotic (VA) oxytetracycline (OTC) is commonly used in confined animal feeding operations to treat animal diseases, as a prophylactic and as a growth promoter. OTC can enter the environment via various routes, including runoff from stored manure stockpiles and application of manure or contaminated irrigation water to agricultural lands. Once introduced, OTC could alter the biogeochemical cycling of various coadsorbing ions, especially micronutrient oxyanions, such as molybdate (MoO<sub>4</sub><sup>2−</sup>). Iron oxide minerals, which play a major role in the soil's biogeochemical cycling of nutrient oxyanions in soil, are known to modify the plant's availability of molybdenum (Mo) via adsorption reactions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>In this study, we examined the impact of OTC on Mo retention on hematite under different solution properties.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We used macroscopic and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic experiments to understand the interactions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results from macroscopic adsorption experiments indicated no reduction in the extent of Mo adsorption in the presence of OTC at higher pH. The spectroscopic results suggested that Mo retention occurred by forming tetrahedral inner-sphere surface species on hematite. Furthermore, the results indicated some alterations in Mo adsorption mechanisms in the presence of OTC. The effect of Mo on OTC adsorption was more prominent as suggested by in situ ATR-FTIR results.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>This study contributes to a better understanding of the biogeochemical cycling of Mo in the presence of VAs.</p>\u0000 </section>\u0000 </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 3","pages":"447-455"},"PeriodicalIF":2.6,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202400395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信