Qian-Qian Li,Qi Yu,Zhi-Yi Liu,Qin Zhang,Meng-Yuan Li,Yan Hu
{"title":"Sevoflurane anesthesia during late gestation induces cognitive disorder in rat offspring via the TLR4/BDNF/TrkB/CREB pathway.","authors":"Qian-Qian Li,Qi Yu,Zhi-Yi Liu,Qin Zhang,Meng-Yuan Li,Yan Hu","doi":"10.1093/jnen/nlae096","DOIUrl":"https://doi.org/10.1093/jnen/nlae096","url":null,"abstract":"Sevoflurane (Sevo) is widely used for general anesthesia during pregnancy. Emerging evidence indicates that maternal Sevo exposure can trigger developmental neurotoxicity in the offspring. Nonetheless, the underlying mechanisms need further investigation. Pregnant Sprague-Dawley rats on gestational day 18 were exposed to 3.5% Sevo to induce the rat model of neurotoxicity. TAK-242, a TLR4 inhibitor, was administrated to inhibit the signaling transduction. Hippocampal tissues of rat offspring were harvested for immunohistochemical staining, TUNEL staining, Western blotting, ELISA, and measurement of oxidative stress-related markers. Serum samples were collected to evaluate lipid metabolism-associated factors. Morris water maze was implemented to test the cognitive function of offspring rats. Rat hippocampal neurons were isolated to elucidate the effect of TAK-242 on the BDNF/TrkB/CREB signaling in vitro. The results showed that maternal Sevo exposure during the third trimester induced neuroinflammation, lipid metabolism disturbance, and oxidative stress, and impaired the spatial learning and memory of rat offspring. Sevo upregulated TLR4 and impeded BDNF/TrkB/CREB signaling transduction in the hippocampus of rat offspring; TAK-242 administration reversed these effects. In conclusion, Sevo anesthesia during late gestation impairs the learning and memory ability of rat offspring possibly by promoting neuroinflammation and disturbing lipid metabolism via the TLR4/BDNF/TrkB/CREB pathway.","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":"29 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SMP30 alleviates cerebral ischemia/reperfusion-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function.","authors":"Rundong Chen,Lei Qian,Qian Zhang,Jiajun Qin,Xianzhen Chen,Xiaolong Xu","doi":"10.1093/jnen/nlae095","DOIUrl":"https://doi.org/10.1093/jnen/nlae095","url":null,"abstract":"Ischemic stroke is a major cause of global death and permanent disability. Major consequences of ischemic stroke include neuronal mitochondrial dysfunction. We investigated the effects of senescence marker protein 30 (SMP30) on mitochondria-mediated apoptosis and histone deacetylase 4 (HDAC4)/postsynaptic density-95 (PSD-95) signaling in stroke models in vivo and in vitro. Rats with middle cerebral artery occlusion/reperfusion (MCAO/R) were used to simulate cerebral ischemia/reperfusion (I/R) injury. SMP30 was downregulated in the brain tissues of rats after I/R induction. SMP30 overexpression decreased MCAO/R-induced infarct volumes and improved neurologic function and histopathological changes. Increasing SMP30 expression suppressed neuronal apoptosis and reduced mitochondrial dysfunction. SMP30 overexpression in SH-SY5Y and PC12 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) decreased HDAC4 and PSD-95 expression; PSD-95 could bind to HDAC4. Furthermore, HDAC4 upregulation abolished the effects of SMP30 overexpression on OGD/R-induced apoptosis and mitochondrial dysfunction in SH-SY5Y cells. Together, these findings indicate that SMP30 alleviates cerebral I/R-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function. These interactions might provide new treatment methods for patients with ischemic stroke.","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":"42 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumit Das, Lindsay Brown, Sarah M Nikkel, Jessica Saunders, Christopher Dunham
{"title":"Dual white matter pathology in fetal holoprosencephaly featuring concurrent malformative and destructive features: A case series.","authors":"Sumit Das, Lindsay Brown, Sarah M Nikkel, Jessica Saunders, Christopher Dunham","doi":"10.1093/jnen/nlae070","DOIUrl":"10.1093/jnen/nlae070","url":null,"abstract":"<p><p>Holoprosencephaly (HPE) is a classic brain malformation involving defective forebrain induction and patterning. Cases of HPE bearing white matter abnormalities have not been well documented, with only rare cases exhibiting hypoxic-ischemic damage. However, neuroradiologic studies of HPE using diffusion tensor imaging have suggested the presence of white matter architectural disarray. Described in this case series are the clinicopathologic features of 8 fetuses with HPE who underwent autopsy at BC Children's Hospital. All 8 cases exhibited subacute to chronic, periventricular leukomalacia (PVL)-like white matter pathology, with 7 of 8 cases also demonstrating aberrant white matter tracts, one of which manifested as a discreet bundle crossing the midline within the ventral aspects of the fused deep gray nuclei. In 6 of these 7 cases, the PVL-like pathology resided within this aberrant white matter tract. Original workup, alongside an additional HPE-focused next-generation sequencing panel identified a likely etiologic cause for the HPE in 4 cases, with an additional 2 cases exhibiting a variant of unknown significance in genes previously suggested to be involved in HPE. Despite our in-depth clinicopathologic and molecular review, no unifying etiology was definitively identified among our series of fetal HPE bearing this unusual pattern of white matter pathology.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"722-735"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Altered expression of human myxovirus resistance protein A in amyotrophic lateral sclerosis.","authors":"Hiroyuki Honda, Shoko Sadashima, Motoi Yoshimura, Naonori Sakurada, Sachiko Koyama, Kaoru Yagita, Hideomi Hamasaki, Hideko Noguchi, Hajime Arahata, Naokazu Sasagasako","doi":"10.1093/jnen/nlae052","DOIUrl":"10.1093/jnen/nlae052","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. The etiology of sporadic ALS (sALS) has not yet been clarified. An increasing body of evidence suggests the involvement of viral infections and interferons (IFNs). Human myxovirus resistance protein A (MxA) is an IFN-induced dynamin-like GTPase that acts as a potent antiviral factor. This study examined MxA expression in ALS patient spinal cords using immunohistochemistry. Thirty-two cases of sALS (pathologically proven ALS-TDP), 10 non-ALS, other neurological disease control cases were examined. In most ALS cases, MxA cytoplasmic condensates were observed in the remaining spinal anterior horn neurons. The ALS group had a significantly higher rate of MxA-highly expressing neurons than the non-ALS group. Colocalization of MxA cytoplasmic condensate and transactive response DNA-binding protein 43 kDa (TDP-43)-positive inclusions was rarely observed. Because MxA has antiviral activity induced by IFNs, our results suggest that IFNs are involved in the pathogenesis of ALS in spinal cord anterior horn neurons. Our study also suggests that monitoring viral infections and IFN activation in patients with ALS may be critically important.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"745-751"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Derek H Oakley, Mirra Chung, Sara Abrha, Bradley T Hyman, Matthew P Frosch
{"title":"β-Amyloid species production and tau phosphorylation in iPSC-neurons with reference to neuropathologically characterized matched donor brains.","authors":"Derek H Oakley, Mirra Chung, Sara Abrha, Bradley T Hyman, Matthew P Frosch","doi":"10.1093/jnen/nlae053","DOIUrl":"10.1093/jnen/nlae053","url":null,"abstract":"<p><p>A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of β-amyloid (Aβ) Aβ40, Aβ42, and Aβ43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aβ43 production by fAD iPSC-neurons and Aβ43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aβ species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aβ production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aβ species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"772-782"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Feng, Peter Jih Cheng Wong, Minjie Fu, Yu Kong, Hao Xu, Guo Yu, Yanwei Wu, Fufang Qiu, Zunguo Du, Tianming Qiu, Jiajun Zheng, Wei Hua
{"title":"The comprehensive morphological and molecular characteristics of lipoastrocytoma: A case report.","authors":"Yuan Feng, Peter Jih Cheng Wong, Minjie Fu, Yu Kong, Hao Xu, Guo Yu, Yanwei Wu, Fufang Qiu, Zunguo Du, Tianming Qiu, Jiajun Zheng, Wei Hua","doi":"10.1093/jnen/nlae047","DOIUrl":"10.1093/jnen/nlae047","url":null,"abstract":"","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"785-790"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lea Ingrassia, Susana Boluda, Marie-Claude Potier, Stéphane Haïk, Gabriel Jimenez, Anuradha Kar, Daniel Racoceanu, Benoît Delatour, Lev Stimmer
{"title":"Automated deep learning segmentation of neuritic plaques and neurofibrillary tangles in Alzheimer disease brain sections using a proprietary software.","authors":"Lea Ingrassia, Susana Boluda, Marie-Claude Potier, Stéphane Haïk, Gabriel Jimenez, Anuradha Kar, Daniel Racoceanu, Benoît Delatour, Lev Stimmer","doi":"10.1093/jnen/nlae048","DOIUrl":"10.1093/jnen/nlae048","url":null,"abstract":"<p><p>Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"752-762"},"PeriodicalIF":3.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michaela M Scanlon, Margaret M Shields, Daniel P Perl, David S Priemer
{"title":"Chronic traumatic encephalopathy pathognomonic lesions occurring in isolation adjacent to infiltrative and non-infiltrative white matter lesions.","authors":"Michaela M Scanlon, Margaret M Shields, Daniel P Perl, David S Priemer","doi":"10.1093/jnen/nlae046","DOIUrl":"10.1093/jnen/nlae046","url":null,"abstract":"<p><p>Chronic traumatic encephalopathy (CTE) is defined by perivascular neuronal phosphorylated-tau accumulation at cortical sulcal depths. CTE has been mainly described in the context of repetitive, impact-type traumatic brain injury (rTBI), principally from contact sports. Rarely, CTE has been associated with single TBIs, including in relationship to healed leucotomy sites in brains from formerly institutionalized psychiatric patients without documented rTBI. Given that leucotomy principally involves severing of white matter, this could suggest involvement of axonal injury in CTE pathophysiology. We present three cases wherein isolated CTE pathology was identified adjacent to distinct white matter lesions. Case 1 is a 41-year-old man with history of hereditary hemorrhagic telangiectasia and resection of a cerebral arteriovenous malformation (AVM). Case 2 is a 46-year-old man with glioblastoma. Case 3 is a 52-year-old man with a remote cerebral infarct. Isolated CTE lesions were found adjacent to the aforementioned pathologies in each case. Additional CTE lesions were not identified despite extensive sampling. Multiple age-related tau astrogliopathy (ARTAG)-like lesions were also identified at other sulcal depths near the AVM resection site in Case 1. These cases may provide insights regarding the pathophysiology of the CTE pathognomonic lesion and the development of ARTAG-like pathology adjacent to long-standing mass lesions.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"695-700"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murad Alturkustani, Adam D Walker, Everardo A Castañeda, Jennifer A Cotter
{"title":"Utility of OLIG2 immunostaining in pediatric brain tumors with embryonal morphology","authors":"Murad Alturkustani, Adam D Walker, Everardo A Castañeda, Jennifer A Cotter","doi":"10.1093/jnen/nlae082","DOIUrl":"https://doi.org/10.1093/jnen/nlae082","url":null,"abstract":"This study evaluates the diagnostic utility of OLIG2 immunohistochemistry for distinguishing between pediatric high-grade gliomas (pHGG) and embryonal tumors (ETs) of the CNS. Utilizing a retrospective pediatric cohort (1990-2021) of 56 CNS tumors, classified initially as primitive neuroectodermal tumors or CNS ET, we reclassified the cases based on WHO CNS5 criteria after comprehensive review and additional molecular testing that included next-generation sequencing and DNA methylation profiling. Our results indicate that OLIG2 immunopositivity was negative or minimal in a significant subset of pHGG cases (6 out of 11). At the same time, it showed diffuse expression in all cases of CNS neuroblastomas with FOXR2 activation (5/5), demonstrating its limited specificity in differentiating between pHGG and ET. Variable OLIG2 expression in other ETs, ATRT, and ETMR suggests the broader diagnostic implications of the marker. Furthermore, incidental findings of OLIG2 positivity in cases traditionally expected to be negative, such as medulloblastoma and ependymoma, introduce an additional layer of complexity. Together, these findings highlight the challenges of relying solely on OLIG2 immunostaining for accurate tumor classification in pediatric CNS neoplasms and underscore the importance of an integrated diagnostic approach.","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":"12 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}