{"title":"Analysis Procedure of Inspection Errors Based on MSA Attribute Study Data Set for the Improvement Purposes: Part 1 – Methodolodgy","authors":"K. Knop","doi":"10.2478/cqpi-2020-0017","DOIUrl":"https://doi.org/10.2478/cqpi-2020-0017","url":null,"abstract":"Abstract The article presents an authorship version of the analysis procedure of data set from MSA Attribute Study for the purposes related to the reduction of conformity assessment errors and improvement of production process effectiveness. The MSA manual does not include any clear guidelines on how to eliminate errors or guidelines on how to analyse data sets from attribute study to eliminate errors. The article attempts to fill the gap identified in this field. In this article (Part 1), the author outlines the key features of own methodology of analysis data from MSA attribute study. In this article, which is one of the two parts, a research problem has been identified. It was emphasised that the influence on the reduction of the effectiveness of the production process have errors committed by the controllers in the alternative assessment of the product’s conformity with the requirements, i.e. errors of I and II type, in particular, II type errors, which should be first eliminated. A traditional approach to research analysis and evaluation of alternative inspection system practised in the MSA manual was presented. Four key assumptions that were adopted for the research goal were presented. Author’s procedure for analysis of errors from the attribute study data set is to point to the direction of activities in the field of error analysis, emphasise intolerance to any error, assume to use the root causes analysis and the coaching sessions to reach the root causes of conformity errors. In the second, final article in the series (Part 2), the author illustrates how, step by step, the procedure could be used in practice. It also presents the advantages and limitations of its own procedure.","PeriodicalId":166707,"journal":{"name":"Conference Quality Production Improvement – CQPI","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125207839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Properties the Al-7%SiMg Alloy with CuAl10Fe3Mn2 Used in Machine Building and Civil Engineering","authors":"T. Lipiński","doi":"10.2478/cqpi-2020-0028","DOIUrl":"https://doi.org/10.2478/cqpi-2020-0028","url":null,"abstract":"Abstract Silumins are one of the most popular group among aluminum casting alloys. They are characterized by good mechanical and casting properties, low density, good electric and thermal conductivity, a low degree of contraction, good corrosion resistance and a relatively low melting temperature. The mechanical properties of hypoeutectic silumins can be improved through chemical modification as well as traditional or technological processing. Modification improves the mechanical properties of alloys through grain refinement. The effect of treatment has been given a lot of information first of all about microstructure and mechanical properties. This study presents the results of treatment of an Al-7%SiMg alloy with composition CuAl10Fe3Mn2 (as a powder) + (Al-7%SiMg + CuAl10Fe3Mn2) (as a powder) + (Al-7%SiMg + CuAl10Fe3Mn2) (in the form of a rod) in three different ranges. The experiments were conducted following a factor design 23 for 3 independent variables. The main addition was aluminum bronze, as well as clear or melted with raw alloy. The influence of the analyzed modifiers on the microstructure and mechanical properties of the processed alloy was presented in graphs. The modification of a hypoeutectic Al-7%SiMg alloy improved the alloy’s properties. The results of the tests indicate that the mechanical properties of the modified alloy are determined by the components introduced to the alloy.","PeriodicalId":166707,"journal":{"name":"Conference Quality Production Improvement – CQPI","volume":"200 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133968330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Customer Attributes Impact on Perceived Quality of Children’s Furniture - Kano Model","authors":"M. Jagusiak-Kocik","doi":"10.2478/cqpi-2020-0007","DOIUrl":"https://doi.org/10.2478/cqpi-2020-0007","url":null,"abstract":"Abstract The paper presents the use of the Kano model and the questionnaire contained in it to analyze customer preferences in relation to children’s furniture - a travel cot. A representative group of 30 people was created. The survey showed which attributes of the travel cot were assessed by the respondents as must-have, onedimensional, and which are excitement attributes (delighters) and mistakes for them. The study will help design a new travel cot model according to expectations of customers - future parents and parents of young children.","PeriodicalId":166707,"journal":{"name":"Conference Quality Production Improvement – CQPI","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124940153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and Comparison of Supprot Systems for the Development of Emission-Free Public Transport in Poland","authors":"Maria Małkowska","doi":"10.2478/cqpi-2020-0004","DOIUrl":"https://doi.org/10.2478/cqpi-2020-0004","url":null,"abstract":"Abstract The way of directive of the European Parliament and the Council in 2014/94 on October 22nd 2014 in the case of infrastructure development of alternative fuels which was specifically concerned with calls to reduce oil dependence on transport in European countries was imposed due to the necessity to formulate specific provisions in individual nations in the Union. In correlation to this, on the day of 11th January 2018 the act on electromobility and alternative fuels was passed, which came to be on the day of 1st September 2018 with changes implemented later on. The regulations mentioned above oblige public transport to partially replace their diesel engine-based rolling stock and introducing changes to alternative fuels (compressed hydrogen in gaseous form belongs to such fuels). Support systems in Poland are an important element in the implementation of modern and ecological technologies. Very often those solutions are much more expensive compared to the ones used so far. The financing provided by them enables the realization of such projects in our environment. In this work, the idea of emission-free public transport operating on the basis of electric vehicles (Battery Electric Vehicles) as well as hydrogen (Fuel Cell Vehicles) will be presented. Both of these variants will be compared and their working principle are going to be shown. The analysis of support systems for the development of emission-free public transport on a European, national and regional level will also be presented. All collected information will form a compendium of information essential to implementing the public transport project in Polish conditions.","PeriodicalId":166707,"journal":{"name":"Conference Quality Production Improvement – CQPI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125980536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}