{"title":"Aerodynamic Characteristics of a Blended-Wing-Body Aircraft With A Serpentine Inlet Using Flow Control Techniques","authors":"Min-Sik Youn, Youn-J. Kim","doi":"10.1115/gt2021-60335","DOIUrl":"https://doi.org/10.1115/gt2021-60335","url":null,"abstract":"\u0000 Demands of a modern aircraft regarding its aerodynamic performance and high efficiency are ever-growing. An S-shaped inlet, as known as a serpentine duct, plays a significant role in increasing fuel efficiency. Recently, the serpentine duct is commonly employed for military aircraft to block the front of the jet engine from radar. However, delivering a non-uniformly distorted flow to the engine face (aerodynamic interface plane, AIP) though a serpentine duct is inevitable due to the existence of flow separation and swirl flow in the duct. The effect of distortion is to cause the engine compressor to surge; thus, it may impact on the life-cycle of aircraft engine. In this study, aerodynamic characteristics of a serpentine duct mounted on a blended-wing-body (BWB) aircraft was thoroughly investigated to determine where and how the vortex flow was generated. In particular, both passive and active flow control were implemented at a place where the flow separation was occurred to minimize the flow distortion rate in the duct. The passive and active flow control systems were used with vortex generator (VG) vanes and air suctions, respectively. A pair of VG s have been made as a set, and 6 sets of VG in the serpentine duct. For the active flow control, 19 air suctions have been implemented. Both flow control devices have been placed in three different locations. To evaluate the performance of flow control system, it is necessary to quantify the flow uniformity at the AIP. Therefore, coefficient of distortion, DC(60) was used as the quantitative measure of distortion. Also, change in DC(60) value while the BWB aircraft is maneuvering phase was analyzed.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123785398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Yevlakhov, L. Moroz, Andrii Khandrymailov, Yuriy Hyrka
{"title":"Transient Analysis of Aircraft Oil Supply System With Fuel-Oil Heat Exchangers During Abrupt Change in Engine Operating Modes","authors":"V. Yevlakhov, L. Moroz, Andrii Khandrymailov, Yuriy Hyrka","doi":"10.1115/gt2021-59992","DOIUrl":"https://doi.org/10.1115/gt2021-59992","url":null,"abstract":"\u0000 During different airplane flight modes, various effects may appear that need to be analyzed for both the oil and the fuel system at steady-state and transient operating modes. The effects, which relate to the cold temperature, associated with fuel freeze or wax point, cause a malfunction in the fuel pumps, nozzles, and other areas of the fuel system. On the other hand, high fuel temperature also leads to negative effects — the most common failure of high-flow fuel systems is cavitation, or “vapor-lock.” The combination of too much heat or too much inlet restriction can create this operating condition, where the liquid fuel literally boils inside the fuel pump. These effects are eliminated by the fuel/oil heat exchange system. In case of low fuel temperature, the fuel is used as a refrigerant to cool down hot oil coming from bearings. And in case of high fuel temperature, the oil serves as a coolant.\u0000 This paper considers the method of evaluating normal and critical aircraft engine operation modes of the oil supply system with a fuel-oil heat exchanger utilizing an unsteady-state thermal-fluid network approach. The analyses are done based on the aircraft engine example to evaluate fuel and oil systems parameters variation in time under different flight conditions — the amount of fuel in the tank, inertial thermal effects, and the response time of the system to the regulation of the heat exchanger. The article is focused on sudden switching from a high to low gas engine operating mode. Fuel consumption to the engine is reduced abruptly, but the heat transfer from the bearings to the oil is still high due to thermal inertia. In this situation, a large amount of heated fuel must be returned to the fuel tank. At a certain point in time, the temperature of the fuel can reach a critical value. At the same time bearing cooling becomes ineffective, which leads to overheating. The calculation of thermal management system was performed at nominal conditions to obtain the initial data for low power settings analysis. As results of analysis at the low power settings mode the oil temperature before fuel cooled oil cooler is reached above 138 °C, which is high value. The failure of flow return valve is considered. The variations of oil temperature after the tank and increasing of fuel temperature at the tank in case of emergency situation are obtained. The influence of cooled fuel amount on the system thermal management is analyzed.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132077751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Aldi, N. Casari, M. Pinelli, A. Suman, Alessandro Vulpio, Paolo Saccenti
{"title":"Performance Modification of an Erosion-Damaged Large-Sized Centrifugal Fan","authors":"Nicola Aldi, N. Casari, M. Pinelli, A. Suman, Alessandro Vulpio, Paolo Saccenti","doi":"10.1115/gt2021-59832","DOIUrl":"https://doi.org/10.1115/gt2021-59832","url":null,"abstract":"\u0000 Heavy-duty fans are frequently employed in industrial processes that involve the operation of contaminated gases. Particle-laden flows may cause erosion issues, generating several drawbacks such as unbalanced load, vibrations and structural damage responsible for performance degradation and early failure. In this paper, the erosion behavior of a large-sized centrifugal fan employed in clinker production is studied by numerical simulation. Based on preliminary numerical results for the undamaged fan configuration and on-field erosion detections, the geometry damage effects due to the erosion process are analyzed. The severe erosive conditions under which these machines operate determine a progressive reduction in wall thickness of specific fan zones, which may finally result in the formation of holes. This, in turn, makes the internal flow field changing, affecting contaminant trajectories and impact characteristics. CFD predictions show that erosion-induced damage on the fan inlet cone causes a distortion of the velocity profile immediately upstream of the impeller, which influences the impeller flow. Simultaneously, the erosion process changes, leading to a modification of particle impact areas, impact kinematic characteristics and erosion intensity. This investigation focuses on the importance of erosion predictions for maintenance planning and scheduling and demonstrates how localized damage could be responsible for larger damage, involving the structural integrity of the installation.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"116 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117267336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Al-Akam, T. Nikolaidis, D. MacManus, Alvise Pellegrini
{"title":"The Use of Enhanced Nozzle Maps for Gas-Turbine Performance Modelling","authors":"A. Al-Akam, T. Nikolaidis, D. MacManus, Alvise Pellegrini","doi":"10.1115/gt2021-60029","DOIUrl":"https://doi.org/10.1115/gt2021-60029","url":null,"abstract":"\u0000 The use of a simulation tool to predict the aero-engine performance before committing to a final engine design has become one of the most cost-saving approaches in this field. However, most of these tools are based on low fidelity thermodynamic models, which are incapable of fully capturing the impact of three-dimensional flow characteristics.\u0000 An aero-engine exhaust-system is one of the essential components that affect the engine performance. Currently, engine performance models tend to utilize simplified nozzle performance maps. These maps typically provide information over a very limited range of nozzle geometries, which may not apply to the wide range of architectures and designs of aeroengines.\u0000 The current paper presents a methodology for the development of nozzle performance maps, which takes into account the aerodynamic and the geometric parameters of the nozzle design. The methodology is based on the reduced-order models. These models are integrated into a zero-dimensional engine performance code to improve the accuracy of its thrust calculation.\u0000 The impact of the new thrust model on the overall engine performance and the operating point is analysed and discussed. The results showed that the implementation of the modified maps, which take into account the flow characteristics and the geometry of the nozzle, affects the thrust calculation. In a typical case of a turbofan operating at cruise conditions, the net thrust estimation with the modified nozzle maps showed a difference of 0.2%, compared with the simple nozzle maps. The new thrust calculation method has the advantage in capturing the multidimensional impact of the flow of the nozzle as compared with the conventional one. Furthermore, the implementation of the new method reduces the uncertainties introduced by a simplified nozzle model and, consequently, it can support the decision-making process in the design of the engine.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123877542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyu Wu, Xiang Luo, Jianqin Zhu, Zhe Zhang, Jiahua Liu
{"title":"A Method of Solving Three Temperature Problem of Turbine With Adiabatic Wall Temperature","authors":"Zeyu Wu, Xiang Luo, Jianqin Zhu, Zhe Zhang, Jiahua Liu","doi":"10.1115/gt2021-59418","DOIUrl":"https://doi.org/10.1115/gt2021-59418","url":null,"abstract":"\u0000 The aeroengine turbine cavity with pre-swirl structure makes the turbine component obtain better cooling effect, but the complex design of inlet and outlet makes it difficult to determine the heat transfer reference temperature of turbine disk. For the pre-swirl structure with two air intakes, the driving temperature difference of heat transfer between disk and cooling air cannot be determined either in theory or in test, which is usually called three-temperature problem. In this paper, the three-temperature problem of a rotating cavity with two cross inlets are studied by means of experiment and numerical simulation. By substituting the adiabatic wall temperature for the inlet temperature and summarizing its variation law, the problem of selecting the reference temperature of the multi-inlet cavity can be solved. The results show that the distribution of the adiabatic wall temperature is divided into the high jet area and the low inflow area, which are mainly affected by the turbulence parameters λT, the rotating Reynolds number Reω, the high inlet temperature Tf,H* and the low radius inlet temperature Tf,L* of the inflow, while the partition position rd can be considered only related to the turbulence parameters λT and the rotating Reynolds number Reω of the inflow. In this paper, based on the analysis of the numerical simulation results, the calculation formulas of the partition position rd and the adiabatic wall temperature distribution are obtained. The results show that the method of experiment combined with adiabatic wall temperature zone simulation can effectively solve the three-temperature problem of rotating cavity.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122340562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Matching Characteristics of Ship-Engine-Propeller of COGAG","authors":"Zhitao Wang, Jiayi Ma, H. Yu, T. Li","doi":"10.1115/gt2021-59788","DOIUrl":"https://doi.org/10.1115/gt2021-59788","url":null,"abstract":"The combined gas turbine and gas turbine power propulsion device (COGAG power propulsion device) is an advanced combined power system, which uses multiple gas turbines as the main engine to drive propellers to propel the ship. COGAG power propulsion device has high power density, excellent stability and maneuverability, it receives more and more attention in the field of ship power at home and abroad. This article takes the COGAG power propulsion device as the research object, uses simulation methods to study its steady-state operating characteristics, and conducts a ship-engine-propeller optimization matching analysis based on economy and maneuverability. The research work carried out in this article is as follows. Firstly, according to the structural relationship between the various components and the system thermal cycle mode of the COGAG power propulsion device, establish the controller, main engine, gear box, clutch, shafting, propeller, ship and other components and simulation models of the system with the modular modeling idea. Secondly, divide the gears according to ship speed. For the four working modes of single-gas turbine with load, dual-gas turbine with load, three-gas turbine with load, and four-gas turbine with load, analysis the ship-engine-propeller optimization matching of the COGAG power propulsion device based on economy and maneuverability, and calculate the best shaft speed and propeller pitch ratio in each gear, so as to obtain the steady-state operation characteristics of the COGAG power propulsion device based on the ship-engine-propeller matching, which provides a basis for determining the target parameters of the dynamic process.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129047120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Instabilities Everywhere! Hard Problems in Aero-Engines","authors":"Z. Spakovszky","doi":"10.1115/gt2021-60864","DOIUrl":"https://doi.org/10.1115/gt2021-60864","url":null,"abstract":"Many of the challenges that limited aero-engine operation in the 1950s, 60s, 70s and 80s were static in nature: hot components exceeding temperature margins, stresses in the high-speed rotating structure approaching safety limits, and turbomachinery aerodynamic efficiencies missing performance goals. Modeling tools have greatly improved since and have helped enhance jet engine design, largely due to better computers and improved simulations of the fluid flow and supporting structure. The situation is thus different today, where important problems encountered past the design and development phases are dynamic in nature. These can jeopardize engine certification and lead to major delays and increased program cost. A real challenge is the characterization of damping and the related dynamic behavior of rotating and stationary components and assemblies, and of the fluid-structure interactions and coupling. The theme of this lecture is instability in the broadest sense. A number of problems of technological interest in aero-engines are discussed with focus on dynamical system modeling and identification of the underlying mechanisms. Future perspectives on outstanding seminal problems and grand challenges are also given.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121348753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The OP16 Gas Turbine Gen-Set for Marine Power Generation","authors":"J. Horváth","doi":"10.1115/gt2021-59075","DOIUrl":"https://doi.org/10.1115/gt2021-59075","url":null,"abstract":"Gas turbines are typically selected for propulsion or power generation on marine vessels because of their excellent power-to-weight ratio, fuel flexibility, long maintenance intervals, and reliability. These machines are operating in challenging conditions that are linked to salty and humid air, constant vessel movement, or lack of rigid foundation. This paper presents a novel gas turbine installation on the top deck of a shuttle tanker ship and its innovative integration into the vessel’s power generation system, and discusses the technical solutions that were developed to comply with the latest safety and environmental regulations.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126824482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}