增强喷管图在燃气轮机性能建模中的应用

A. Al-Akam, T. Nikolaidis, D. MacManus, Alvise Pellegrini
{"title":"增强喷管图在燃气轮机性能建模中的应用","authors":"A. Al-Akam, T. Nikolaidis, D. MacManus, Alvise Pellegrini","doi":"10.1115/gt2021-60029","DOIUrl":null,"url":null,"abstract":"\n The use of a simulation tool to predict the aero-engine performance before committing to a final engine design has become one of the most cost-saving approaches in this field. However, most of these tools are based on low fidelity thermodynamic models, which are incapable of fully capturing the impact of three-dimensional flow characteristics.\n An aero-engine exhaust-system is one of the essential components that affect the engine performance. Currently, engine performance models tend to utilize simplified nozzle performance maps. These maps typically provide information over a very limited range of nozzle geometries, which may not apply to the wide range of architectures and designs of aeroengines.\n The current paper presents a methodology for the development of nozzle performance maps, which takes into account the aerodynamic and the geometric parameters of the nozzle design. The methodology is based on the reduced-order models. These models are integrated into a zero-dimensional engine performance code to improve the accuracy of its thrust calculation.\n The impact of the new thrust model on the overall engine performance and the operating point is analysed and discussed. The results showed that the implementation of the modified maps, which take into account the flow characteristics and the geometry of the nozzle, affects the thrust calculation. In a typical case of a turbofan operating at cruise conditions, the net thrust estimation with the modified nozzle maps showed a difference of 0.2%, compared with the simple nozzle maps. The new thrust calculation method has the advantage in capturing the multidimensional impact of the flow of the nozzle as compared with the conventional one. Furthermore, the implementation of the new method reduces the uncertainties introduced by a simplified nozzle model and, consequently, it can support the decision-making process in the design of the engine.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Enhanced Nozzle Maps for Gas-Turbine Performance Modelling\",\"authors\":\"A. Al-Akam, T. Nikolaidis, D. MacManus, Alvise Pellegrini\",\"doi\":\"10.1115/gt2021-60029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of a simulation tool to predict the aero-engine performance before committing to a final engine design has become one of the most cost-saving approaches in this field. However, most of these tools are based on low fidelity thermodynamic models, which are incapable of fully capturing the impact of three-dimensional flow characteristics.\\n An aero-engine exhaust-system is one of the essential components that affect the engine performance. Currently, engine performance models tend to utilize simplified nozzle performance maps. These maps typically provide information over a very limited range of nozzle geometries, which may not apply to the wide range of architectures and designs of aeroengines.\\n The current paper presents a methodology for the development of nozzle performance maps, which takes into account the aerodynamic and the geometric parameters of the nozzle design. The methodology is based on the reduced-order models. These models are integrated into a zero-dimensional engine performance code to improve the accuracy of its thrust calculation.\\n The impact of the new thrust model on the overall engine performance and the operating point is analysed and discussed. The results showed that the implementation of the modified maps, which take into account the flow characteristics and the geometry of the nozzle, affects the thrust calculation. In a typical case of a turbofan operating at cruise conditions, the net thrust estimation with the modified nozzle maps showed a difference of 0.2%, compared with the simple nozzle maps. The new thrust calculation method has the advantage in capturing the multidimensional impact of the flow of the nozzle as compared with the conventional one. Furthermore, the implementation of the new method reduces the uncertainties introduced by a simplified nozzle model and, consequently, it can support the decision-making process in the design of the engine.\",\"PeriodicalId\":166333,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在进行最终发动机设计之前,使用仿真工具预测航空发动机的性能已成为该领域最节省成本的方法之一。然而,这些工具大多基于低保真热力学模型,无法完全捕捉三维流动特性的影响。航空发动机排气系统是影响发动机性能的重要部件之一。目前,发动机性能模型倾向于使用简化的喷管性能图。这些地图通常只提供喷嘴几何形状的有限范围内的信息,这可能不适用于航空发动机的大范围结构和设计。本文提出了一种考虑喷管设计的气动参数和几何参数的喷管性能图的开发方法。该方法基于降阶模型。这些模型被整合到零维发动机性能代码中,以提高其推力计算的准确性。分析和讨论了新推力模型对发动机整体性能和工作点的影响。结果表明,考虑了流动特性和喷管几何形状的改进图的实施影响了推力的计算。在一个典型的涡轮风扇巡航工况中,与简单喷管图相比,改进喷管图的净推力估算值相差0.2%。与传统的推力计算方法相比,新的推力计算方法在捕捉喷管流动的多维影响方面具有优势。此外,该方法的实现减少了喷管简化模型带来的不确定性,从而可以支持发动机设计决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Enhanced Nozzle Maps for Gas-Turbine Performance Modelling
The use of a simulation tool to predict the aero-engine performance before committing to a final engine design has become one of the most cost-saving approaches in this field. However, most of these tools are based on low fidelity thermodynamic models, which are incapable of fully capturing the impact of three-dimensional flow characteristics. An aero-engine exhaust-system is one of the essential components that affect the engine performance. Currently, engine performance models tend to utilize simplified nozzle performance maps. These maps typically provide information over a very limited range of nozzle geometries, which may not apply to the wide range of architectures and designs of aeroengines. The current paper presents a methodology for the development of nozzle performance maps, which takes into account the aerodynamic and the geometric parameters of the nozzle design. The methodology is based on the reduced-order models. These models are integrated into a zero-dimensional engine performance code to improve the accuracy of its thrust calculation. The impact of the new thrust model on the overall engine performance and the operating point is analysed and discussed. The results showed that the implementation of the modified maps, which take into account the flow characteristics and the geometry of the nozzle, affects the thrust calculation. In a typical case of a turbofan operating at cruise conditions, the net thrust estimation with the modified nozzle maps showed a difference of 0.2%, compared with the simple nozzle maps. The new thrust calculation method has the advantage in capturing the multidimensional impact of the flow of the nozzle as compared with the conventional one. Furthermore, the implementation of the new method reduces the uncertainties introduced by a simplified nozzle model and, consequently, it can support the decision-making process in the design of the engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信