Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen
{"title":"Complement proteins and complement regulatory proteins are associated with age-related macular degeneration stage and treatment response.","authors":"Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen","doi":"10.1186/s12974-024-03273-7","DOIUrl":"10.1186/s12974-024-03273-7","url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD).</p><p><strong>Methods: </strong>In this clinical prospective study, treatment-naïve patients with nAMD, intermediate AMD (iAMD) and healthy controls were recruited and systemic complement proteins C3, C3a and C5a were investigated with electrochemiluminescence immunoassays, and Creg expression (CD35, CD46 and CD59) on T cells (CD4 + and CD8+) and monocytes (classical, intermediate and non-classical) investigated with flow cytometry. Treatment response in nAMD patients was evaluated after loading dose and after one year, and categorized as good, partial or poor. Complement proteins and Creg expression levels were compared between healthy controls, iAMD and nAMD, as well as between good, partial and poor nAMD treatment response groups. Polymorphisms in the CFH and ARMS2 genes were analyzed and compared to complement proteins and Creg expression levels in nAMD patients.</p><p><strong>Results: </strong>One hundred patients with nAMD, 34 patients with iAMD and 61 healthy controls were included. 94 nAMD patients completed the 1-year follow-up. Distribution of treatment response in nAMD was 61 (65%) good, 26 (28%) partial, and 7 (7%) poor responders. The distribution of 1-year treatment response was 50 (53%) good, 33 (36%) partial, and 11 (11%) poor responders. The concentrations of systemic C3, C3a, and the C3a/C3-ratio were significantly increased in patients with nAMD compared to healthy controls (P < 0.001, P = 0.002, and P = 0.035, respectively). Systemic C3 was also increased in iAMD compared to healthy controls (P = 0.031). The proportion of CD46 + CD4 + T cells and CD59 + intermediate monocytes were significantly decreased in patients with nAMD compared to healthy controls (P = 0.018 and P = 0.042, respectively). The post-loading dose partial treatment response group had significantly lower concentrations of C3a and C5a compared to the good response group (P = 0.005 and P = 0.042, respectively). The proportion of CD35 + monocytes was significantly lower in the 1-year partial response group compared to the 1-year good response group (P = 0.039). High-risk CFH genotypes in nAMD patients was associated with increased C3a, C3a/C3-ratio, and expression levels of CD35 + CD8 + T cells and CD46 + classical monocytes, while expression level of CD46 + non-classical monocytes was decreased.</p><p><strong>Conclusion: </strong>Elevated concentrations of systemic complement proteins were found in patients with iAMD and nAMD. Decreased Creg expression levels were found in patients with nAMD. Partially responding nAMD patients had a dysre","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"284"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin
{"title":"Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice.","authors":"Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin","doi":"10.1186/s12974-024-03277-3","DOIUrl":"10.1186/s12974-024-03277-3","url":null,"abstract":"<p><strong>Background: </strong>The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.</p><p><strong>Methods: </strong>The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6<sup>+/-</sup> mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6<sup>-/-</sup>: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.</p><p><strong>Results: </strong>We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.</p><p><strong>Conclusion: </strong>These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"282"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley
{"title":"The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review.","authors":"Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley","doi":"10.1186/s12974-024-03263-9","DOIUrl":"10.1186/s12974-024-03263-9","url":null,"abstract":"<p><strong>Background: </strong>Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation.</p><p><strong>Methods: </strong>Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: \"multiple sclerosis\"; \"alemtuzumab\"; and \"autoimmunity\". Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis.</p><p><strong>Results: </strong>19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development.</p><p><strong>Conclusions: </strong>While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"281"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sienna S Drake, Aliyah Zaman, Christine Gianfelice, Elizabeth M-L Hua, Kali Heale, Elia Afanasiev, Wendy Klement, Jo Anne Stratton, Alexandre Prat, Stephanie Zandee, Alyson E Fournier
{"title":"Senolytic treatment diminishes microglia and decreases severity of experimental autoimmune encephalomyelitis.","authors":"Sienna S Drake, Aliyah Zaman, Christine Gianfelice, Elizabeth M-L Hua, Kali Heale, Elia Afanasiev, Wendy Klement, Jo Anne Stratton, Alexandre Prat, Stephanie Zandee, Alyson E Fournier","doi":"10.1186/s12974-024-03278-2","DOIUrl":"10.1186/s12974-024-03278-2","url":null,"abstract":"<p><strong>Background: </strong>The role of senescence in disease contexts is complex, however there is considerable evidence that depletion of senescent cells improves outcomes in a variety of contexts particularly related to aging, cognition, and neurodegeneration. Much research has shown previously that inflammation can promote cellular senescence. Microglia are a central nervous system innate immune cell that undergo senescence with aging and during neurodegeneration. The contribution of senescent microglia to multiple sclerosis, an inflammatory neurodegenerative disease, is not clear, but microglia are strongly implicated in chronic active lesion pathology, tissue injury, and disease progression. Drugs that could specifically eliminate dysregulated microglia in multiple sclerosis are therefore of great interest to the field.</p><p><strong>Results: </strong>A single-cell analysis of brain tissue from mice subjected to experimental autoimmune encephalomyelitis (EAE), a mouse model of CNS inflammation that models aspects of multiple sclerosis (MS), identified microglia with a strong transcriptional signature of senescence including the presence of BCL2-family gene transcripts. Microglia expressing Bcl2l1 had higher expression of pro-inflammatory and senescence associated genes than their Bcl2l1 negative counterparts in EAE, suggesting they may exacerbate inflammation. Notably, in human single-nucleus sequencing from MS, BCL2L1 positive microglia were enriched in lesions with active inflammatory pathology, and likewise demonstrated increased expression of immune genes suggesting they may be proinflammatory and contribute to disease processes in chronic active lesions. Employing a small molecule BCL2-family inhibitor, Navitoclax (ABT-263), significantly reduced the presence of microglia and macrophages in the EAE spinal cord, suggesting that these cells can be targeted by senolytic treatment. ABT-263 treatment had a profound effect on EAE mice: decreasing motor symptom severity, improving visual acuity, promoting neuronal survival, and decreasing white matter inflammation.</p><p><strong>Conclusion: </strong>These results support the hypothesis that microglia and macrophages exhibit transcriptional features of cellular senescence in EAE and MS, and that microglia expressing Bcl2l1 demonstrate a proinflammatory signature that may exacerbate inflammation resulting in negative outcomes in neuroinflammatory disease. Depleting microglia and macrophages using a senolytic results in robust improvement in EAE disease severity, including across measures of neurodegeneration, inflammation, and demyelination, and may therefore represent a novel strategy to address disease progression in multiple sclerosis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"283"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prashant Tarale, Shaista Chaudhary, Sayani Mukherjee, Dipak K Sarkar
{"title":"Ethanol-activated microglial exosomes induce MCP1 signaling mediated death of stress-regulatory proopiomelanocortin neurons in the developing hypothalamus.","authors":"Prashant Tarale, Shaista Chaudhary, Sayani Mukherjee, Dipak K Sarkar","doi":"10.1186/s12974-024-03274-6","DOIUrl":"10.1186/s12974-024-03274-6","url":null,"abstract":"<p><strong>Background: </strong>Microglia, a type of resident immune cells within the central nervous system, have been implicated in ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined if microglial extracellular vesicles (exosomes) are involved in the ethanol-induced neuronal death of the β-endorphin neuron via secreting elevated levels of the chemokine monocyte chemoattractant protein 1 (MCP1), a key regulator of neuroinflammation.</p><p><strong>Methods: </strong>We employed an in vitro model, consisting of primary culture of hypothalamic microglia prepared from postnatal day 2 (PND2) rat hypothalami and treated with or without 50 mM ethanol for 24 h, and an in vivo animal model in which microglia were obtained from hypothalami of PND6 rats fed daily with 2.5 mg/kg ethanol or control milk formula for five days prior to use. Exosomes were extracted and characterized with nanosight tracking analysis (NTA), transmission electron microscopy and western blot. Chemokine multiplex immunoassay and ELISA were used for quantitative estimation of MCP1 level. Neurotoxic ability of exosome was tested using primary cultures of β-endorphin neurons and employing nucleosome assay and immunocytochemistry. Elevated plus maze, open field and restraint tests were used to assess anxiety-related behaviors.</p><p><strong>Results: </strong>Ethanol elevated MCP1 levels in microglial exosomes both in vitro and in vivo models. Ethanol-activated microglial exosomes when introduced into primary cultures of β-endorphin neurons, increased cellular levels of MCP1 and the chemokine receptor CCR2 related signaling molecules including inflammatory cytokines and apoptotic genes as well as apoptotic death of β-endorphin neurons. These effects of microglial exosomes on β-endorphin neurons were suppressed by a CCR2 antagonist RS504393. Furthermore, RS504393 when injected in postnatal rats prior to feeding with ethanol it reduced alcohol-induced β-endorphin neuronal death in the hypothalamus. RS504393 also suppressed corticosterone response to stress and anxiety-like behaviors in postnatally alcohol-fed rats during adult period.</p><p><strong>Conclusion: </strong>These data suggest that alcohol exposures during the developmental period elevates MCP1 levels in microglial exosomes that promote MCP1/CCR2 signaling to increase the apoptosis of β-endorphin neurons and resulting in hormonal and behavioral stress responses.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"279"},"PeriodicalIF":9.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Xiang, Du Yu, Zhuangzhuang Li, Jelke J Fros, Jianchao Wei, Ke Liu, Zongjie Li, Donghua Shao, Beibei Li, Jeroen Kortekaas, Monique M van Oers, Zhiyong Ma, Gorben P Pijlman, Yafeng Qiu
{"title":"Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression.","authors":"Xiao Xiang, Du Yu, Zhuangzhuang Li, Jelke J Fros, Jianchao Wei, Ke Liu, Zongjie Li, Donghua Shao, Beibei Li, Jeroen Kortekaas, Monique M van Oers, Zhiyong Ma, Gorben P Pijlman, Yafeng Qiu","doi":"10.1186/s12974-024-03266-6","DOIUrl":"10.1186/s12974-024-03266-6","url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"277"},"PeriodicalIF":9.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lushu Chen, HuiYing Zhang, Ying Zhang, Xiumiao Li, MeiHuan Wang, Yaming Shen, Yuan Cao, Yong Xu, Jin Yao
{"title":"Ganglion cell-derived LysoPS induces retinal neovascularisation by activating the microglial GPR34-PI3K-AKT-NINJ1 axis.","authors":"Lushu Chen, HuiYing Zhang, Ying Zhang, Xiumiao Li, MeiHuan Wang, Yaming Shen, Yuan Cao, Yong Xu, Jin Yao","doi":"10.1186/s12974-024-03265-7","DOIUrl":"10.1186/s12974-024-03265-7","url":null,"abstract":"<p><p>Retinal neovascularisation is a major cause of blindness in patients with proliferative diabetic retinopathy (PDR). It is mediated by the complex interaction between dysfunctional ganglion cells, microglia, and vascular endothelial cells. Notably, retinal microglia, the intrinsic immune cells of the retina, play a crucial role in the pathogenesis of retinopathy. In this study, we found that lysophosphatidylserines (LysoPS) released from injured ganglion cells induced microglial extracellular trap formation and retinal neovascularisation. Mechanistically, LysoPS activated the GPR34-PI3K-AKT-NINJ1 signalling axis by interacting with the GPR34 receptor on the microglia. This activation upregulated the expression of inflammatory cytokines, such as IL-6, IL-8, VEGFA, and FGF2, and facilitated retinal vascular endothelial cell angiogenesis. As a result, inhibition of the GPR34-PI3K-AKT-NINJ1 axis significantly decreased microglial extracellular trap formation and neovascularisation by suppressing LysoPS-induced microglial inflammatory responses, both in vitro and in vivo. This study reveals the crucial role of apoptotic ganglion cells in activating microglial inflammation in PDR, thereby enhancing our understanding of the pathogenesis of retinal neovascularisation.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"278"},"PeriodicalIF":9.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie Langlois, Simona Lange, Martin Ebeling, Will Macnair, Roland Schmucki, Cenxiao Li, Jonathan DeGeer, Tania J J Sudharshan, V Wee Yong, Yun-An Shen, Christopher Harp, Ludovic Collin, James Keaney
{"title":"Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways.","authors":"Julie Langlois, Simona Lange, Martin Ebeling, Will Macnair, Roland Schmucki, Cenxiao Li, Jonathan DeGeer, Tania J J Sudharshan, V Wee Yong, Yun-An Shen, Christopher Harp, Ludovic Collin, James Keaney","doi":"10.1186/s12974-024-03267-5","DOIUrl":"10.1186/s12974-024-03267-5","url":null,"abstract":"<p><strong>Background: </strong>Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia.</p><p><strong>Methods: </strong>Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids.</p><p><strong>Results: </strong>We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis.</p><p><strong>Conclusions: </strong>Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"276"},"PeriodicalIF":9.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong-Shuang Pei, Xiao-Ou Hou, Zhen-Yuan Ma, Hai-Yue Tu, Hai-Chun Qian, Yang Li, Kai Li, Chun-Feng Liu, Liang Ouyang, Jun-Yi Liu, Li-Fang Hu
{"title":"α-Synuclein disrupts microglial autophagy through STAT1-dependent suppression of Ulk1 transcription.","authors":"Chong-Shuang Pei, Xiao-Ou Hou, Zhen-Yuan Ma, Hai-Yue Tu, Hai-Chun Qian, Yang Li, Kai Li, Chun-Feng Liu, Liang Ouyang, Jun-Yi Liu, Li-Fang Hu","doi":"10.1186/s12974-024-03268-4","DOIUrl":"10.1186/s12974-024-03268-4","url":null,"abstract":"<p><strong>Background: </strong>Autophagy dysfunction in glial cells is implicated in the pathogenesis of Parkinson's disease (PD). The previous study reported that α-synuclein (α-Syn) disrupted autophagy in cultured microglia. However, the mechanism of microglial autophagy dysregulation is poorly understood.</p><p><strong>Methods: </strong>Two α-Syn-based PD models were generated via AAV-mediated α-Syn delivery into the mouse substantia nigra and striatal α-Syn preformed fibril (PFF) injection. The levels of microglial UNC-51-like kinase 1 (Ulk1) and other autophagy-related genes in vitro and in PD mice, as well as in the peripheral blood mononuclear cells of PD patients and healthy controls, were determined via quantitative PCR, western blotting and immunostaining. The regulatory effect of signal transducer and activator of transcription 1 (STAT1) on Ulk1 transcription was determined via a luciferase reporter assay and other biochemical studies and was verified through Stat1 knockdown or overexpression. The effect of α-Syn on glial STAT1 activation was assessed by immunohistochemistry and western blotting. Changes in microglial status, proinflammatory molecule expression and dopaminergic neuron loss in the nigrostriatum of PD and control mice following microglial Stat1 conditional knockout (cKO) or treatment with the ULK1 activator BL-918 were evaluated by immunostaining and western blotting. Motor behaviors were determined via open field tests, rotarod tests and balance beam crossing.</p><p><strong>Results: </strong>The transcription of microglial ULK1, a kinase that controls autophagy initiation, decreased in both in vitro and in vivo PD mouse models. STAT1 plays a critical role in suppressing Ulk1 transcription. Specifically, Stat1 overexpression downregulated Ulk1 transcription, while Stat1 knockdown increased ULK1 expression, along with an increase in LC3II and a decrease in the SQSTM1/p62 protein. α-Syn PFF caused toll-like receptor 4-dependent activation of STAT1 in microglia. Ablation of Stat1 alleviated the decrease in microglial ULK1 expression and disruption of autophagy caused by α-Syn PFF. Importantly, the ULK1 activator BL-918 and microglial Stat1 cKO attenuated neuroinflammation, dopaminergic neuronal damage and motor defects in PD models.</p><p><strong>Conclusions: </strong>These findings reveal a novel mechanism by which α-Syn impairs microglial autophagy and indicate that targeting STAT1 or ULK1 may be a therapeutic strategy for PD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"275"},"PeriodicalIF":9.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miao Wang, Connor Dufort, Zhihong Du, Ruyu Shi, Fei Xu, Zhentai Huang, Ana Rios Sigler, Rehana K Leak, Xiaoming Hu
{"title":"IL-33/ST2 signaling in monocyte-derived macrophages maintains blood-brain barrier integrity and restricts infarctions early after ischemic stroke.","authors":"Miao Wang, Connor Dufort, Zhihong Du, Ruyu Shi, Fei Xu, Zhentai Huang, Ana Rios Sigler, Rehana K Leak, Xiaoming Hu","doi":"10.1186/s12974-024-03264-8","DOIUrl":"10.1186/s12974-024-03264-8","url":null,"abstract":"<p><strong>Background: </strong>Brain microglia and infiltrating monocyte-derived macrophages are vital in preserving blood vessel integrity after stroke. Understanding mechanisms that induce immune cells to adopt vascular-protective phenotypes may hasten the development of stroke treatments. IL-33 is a potent chemokine released from damaged cells, such as CNS glia after stroke. The activation of IL-33/ST2 signaling has been shown to promote neuronal viability and white matter integrity after ischemic stroke. The impact of IL-33/ST2 on blood-brain barrier (BBB) integrity, however, remains unknown. The current study fills this gap and reveals a critical role of IL-33/ST2 signaling in macrophage-mediated BBB protection after stroke.</p><p><strong>Methods: </strong>Transient middle cerebral artery occlusion (tMCAO) was performed to induce ischemic stroke in wildtype (WT) versus ST2 knockout (KO) male mice. IL-33 was applied intranasally to tMCAO mice with or without dietary PLX5622 to deplete microglia/macrophages. ST2 KO versus WT bone marrow or macrophage cell transplantations were used to test the involvement of ST2<sup>+</sup> macrophages in BBB integrity. Macrophages were cocultured in transwells with brain endothelial cells (ECs) after oxygen-glucose deprivation (OGD) to test potential direct effects of IL33-treated macrophages on the BBB in vitro.</p><p><strong>Results: </strong>The ST2 receptor was expressed in brain ECs, microglia, and infiltrating macrophages. Global KO of ST2 led to more IgG extravasation and loss of ZO-1 in cerebral microvessels 3 days post-tMCAO. Intranasal IL-33 administration reduced BBB leakage and infarct severity in microglia/macrophage competent mice, but not in microglia/macrophage depleted mice. Worse BBB injury was observed after tMCAO in chimeric WT mice reconstituted with ST2 KO bone marrow, and in WT mice whose monocytes were replaced by ST2 KO monocytes. Macrophages treated with IL-33 reduced in vitro barrier leakage and maintained tight junction integrity after OGD. In contrast, IL-33 exerted minimal direct effects on the endothelial barrier in the absence of macrophages. IL-33-treated macrophages demonstrated transcriptional upregulation of an array of protective factors, suggesting a shift towards favorable phenotypes.</p><p><strong>Conclusion: </strong>Our results demonstrate that early-stage IL-33/ST2 signaling in infiltrating macrophages reduces the extent of acute BBB disruption after stroke. Intranasal IL-33 administration may represent a new strategy to reduce BBB leakage and infarct severity.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"274"},"PeriodicalIF":9.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}