Journal of Neuroinflammation最新文献

筛选
英文 中文
Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation 颈动脉血管狭窄导致血液-脑脊液屏障损伤和神经炎症
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-10 DOI: 10.1186/s12974-024-03209-1
Lin Lin, Yang Chen, Kai He, Shamseldin Metwally, Roshani Jha, Okan Capuk, Mohammad Iqbal H. Bhuiyan, Gazal Singh, Guodong Cao, Yan Yin, Dandan Sun
{"title":"Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation","authors":"Lin Lin, Yang Chen, Kai He, Shamseldin Metwally, Roshani Jha, Okan Capuk, Mohammad Iqbal H. Bhuiyan, Gazal Singh, Guodong Cao, Yan Yin, Dandan Sun","doi":"10.1186/s12974-024-03209-1","DOIUrl":"https://doi.org/10.1186/s12974-024-03209-1","url":null,"abstract":"The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl− cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. 牙周炎和抑郁症临床前模型中的小胶质细胞形态/炎症表型和内源性大麻素信号转导。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-08 DOI: 10.1186/s12974-024-03213-5
Javier Robledo-Montaña, César Díaz-García, María Martínez, Nagore Ambrosio, Eduardo Montero, María José Marín, Leire Virto, Marina Muñoz-López, David Herrera, Mariano Sanz, Juan Carlos Leza, Borja García-Bueno, Elena Figuero, David Martín-Hernández
{"title":"Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression.","authors":"Javier Robledo-Montaña, César Díaz-García, María Martínez, Nagore Ambrosio, Eduardo Montero, María José Marín, Leire Virto, Marina Muñoz-López, David Herrera, Mariano Sanz, Juan Carlos Leza, Borja García-Bueno, Elena Figuero, David Martín-Hernández","doi":"10.1186/s12974-024-03213-5","DOIUrl":"10.1186/s12974-024-03213-5","url":null,"abstract":"<p><strong>Background: </strong>Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood.</p><p><strong>Methods: </strong>Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques.</p><p><strong>Results: </strong>Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls.</p><p><strong>Conclusions: </strong>The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tyrosine phosphorylation and palmitoylation of TRPV2 ion channel tune microglial beta-amyloid peptide phagocytosis. TRPV2离子通道的酪氨酸磷酸化和棕榈酰化调控小胶质细胞的β-淀粉样肽吞噬功能。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-03 DOI: 10.1186/s12974-024-03204-6
Shaobin Yang, Yaqin Du, Yanhong Li, Qi Tang, Yimeng Zhang, Xiaoqian Zhao
{"title":"Tyrosine phosphorylation and palmitoylation of TRPV2 ion channel tune microglial beta-amyloid peptide phagocytosis.","authors":"Shaobin Yang, Yaqin Du, Yanhong Li, Qi Tang, Yimeng Zhang, Xiaoqian Zhao","doi":"10.1186/s12974-024-03204-6","DOIUrl":"10.1186/s12974-024-03204-6","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-β (Aβ) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aβ phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aβ phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aβ phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aβ phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aβ phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aβ phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic profile of extracellular vesicles from plasma and CSF of multiple sclerosis patients reveals disease activity-associated EAAT2. 多发性硬化症患者血浆和脑脊液细胞外囊泡的蛋白质组图谱揭示了与疾病活动相关的 EAAT2。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-02 DOI: 10.1186/s12974-024-03148-x
Antonella D'Ambrosio, Silvia Zamboni, Serena Camerini, Marialuisa Casella, Massimo Sanchez, Donatella Pietraforte, Nicola Vanacore, Marco Diociauti, Marta Altieri, Vittorio Di Piero, Ada Francia, Simona Pontecorvo, Marco Puthenparampil, Paolo Gallo, Paola Margutti
{"title":"Proteomic profile of extracellular vesicles from plasma and CSF of multiple sclerosis patients reveals disease activity-associated EAAT2.","authors":"Antonella D'Ambrosio, Silvia Zamboni, Serena Camerini, Marialuisa Casella, Massimo Sanchez, Donatella Pietraforte, Nicola Vanacore, Marco Diociauti, Marta Altieri, Vittorio Di Piero, Ada Francia, Simona Pontecorvo, Marco Puthenparampil, Paolo Gallo, Paola Margutti","doi":"10.1186/s12974-024-03148-x","DOIUrl":"10.1186/s12974-024-03148-x","url":null,"abstract":"<p><strong>Background and objectives: </strong>There is an urgent need to discover blood-based biomarkers of multiple sclerosis (MS) to better define the underlying biology of relapses and monitor disease progression. The main goal of this study is to search for candidate biomarkers of MS relapses associated with circulating extracellular vesicles (EVs), an emerging tool for biomarker discovery.</p><p><strong>Methods: </strong>EVs, purified from unpaired plasma and CSF samples of RRMS patients by size-exclusion chromatography (SEC), underwent proteomic analysis to discover novel biomarkers associated with MS relapses. The candidate biomarkers of disease activity were detected by comparison approach between plasma- and CSF-EV proteomes associated with relapses. Among them, a selected potential biomarker was evaluated in a cohort of MS patients, using a novel and highly reproducible flow cytometry-based approach in order to detect low abundant EV subsets in a complex body fluid such as plasma.</p><p><strong>Results: </strong>The proteomic profiles of both SEC-purified plasma EVs (from 6 patients in relapse and 5 patients in remission) and SEC-purified CSF EVs (from 4 patients in relapse and 3 patients in remission) revealed a set of proteins associated with MS relapses significant enriched in the synaptic transmission pathway. Among common proteins, excitatory amino-acid transporter 2, EAAT2, responsible for the majority of the glutamate uptake in CNS, was worthy of further investigation. By screening plasma samples from 110 MS patients, we found a significant association of plasma EV-carried EAAT2 protein (EV-EAAT2) with MS relapses, regardless of disease-modifying therapies. This finding was confirmed by investigating the presence of EV-EAAT2 in plasma samples collected longitudinally from 10 RRMS patients, during relapse and remission. Moreover, plasma EV-EAAT2 levels correlated positively with Expanded Disability Status Scale (EDSS) score in remitting MS patients but showed a negative correlation with age in patients with secondary progressive (SPMS).</p><p><strong>Conclusion: </strong>Our results emphaticize the usefulness of plasma EVs as a source of accessible biomarkers to remotely analyse the CNS status. Plasma EV-EAAT2 showed to be a promising biomarker for MS relapses. Further studies are required to assess the clinical relevance of this biomarker also for disability progression independent of relapse activity and transition from RRMS towards SPMS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ1-42 oligomers. 小胶质细胞可促进或抑制Aβ1-42寡聚体介导的TRAIL兴奋毒性。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-01 DOI: 10.1186/s12974-024-03208-2
Jian Zou, Elizabeth McNair, Sagan DeCastro, Scott P Lyons, Angie Mordant, Laura E Herring, Ryan P Vetreno, Leon G Coleman
{"title":"Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ<sub>1-42</sub> oligomers.","authors":"Jian Zou, Elizabeth McNair, Sagan DeCastro, Scott P Lyons, Angie Mordant, Laura E Herring, Ryan P Vetreno, Leon G Coleman","doi":"10.1186/s12974-024-03208-2","DOIUrl":"10.1186/s12974-024-03208-2","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD.</p><p><strong>Methods: </strong>Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ<sub>1-42</sub> oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs.</p><p><strong>Results: </strong>Neurotoxicity induced by soluble Aβ<sub>1-42</sub> oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention.</p><p><strong>Conclusion: </strong>Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease. 抑制 JAK/STAT 通路可抑制帕金森病 61-PFF 小鼠模型中的神经炎症。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-09-01 DOI: 10.1186/s12974-024-03210-8
Huixian Hong, Yong Wang, Marissa Menard, Jessica A Buckley, Lianna Zhou, Laura Volpicelli-Daley, David G Standaert, Hongwei Qin, Etty N Benveniste
{"title":"Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson's disease.","authors":"Huixian Hong, Yong Wang, Marissa Menard, Jessica A Buckley, Lianna Zhou, Laura Volpicelli-Daley, David G Standaert, Hongwei Qin, Etty N Benveniste","doi":"10.1186/s12974-024-03210-8","DOIUrl":"10.1186/s12974-024-03210-8","url":null,"abstract":"<p><p>Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4<sup>+</sup> T-cells, CD8<sup>+</sup> T-cells, CD19<sup>+</sup> B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45<sup>+</sup> cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia LILRB4 upregulation reduces brain damage after acute ischemic stroke by limiting CD8+ T cell recruitment. 小胶质细胞 LILRB4 上调可通过限制 CD8+ T 细胞招募减轻急性缺血性中风后的脑损伤。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-08-31 DOI: 10.1186/s12974-024-03206-4
Yilin Ma, Kai Zheng, Chengcheng Zhao, Jieli Chen, Lin Chen, Yue Zhang, Tao Chen, Xiuhua Yao, Ying Cai, Jialing Wu
{"title":"Microglia LILRB4 upregulation reduces brain damage after acute ischemic stroke by limiting CD8<sup>+</sup> T cell recruitment.","authors":"Yilin Ma, Kai Zheng, Chengcheng Zhao, Jieli Chen, Lin Chen, Yue Zhang, Tao Chen, Xiuhua Yao, Ying Cai, Jialing Wu","doi":"10.1186/s12974-024-03206-4","DOIUrl":"10.1186/s12974-024-03206-4","url":null,"abstract":"<p><strong>Background: </strong>Leukocyte immunoglobulin-like receptor B4 (LILRB4) plays a significant role in regulating immune responses. LILRB4 in microglia might influence the infiltration of peripheral T cells. However, whether and how LILRB4 expression aggravates brain damage after acute ischemic stroke remains unclear. This study investigates the role of LILRB4 in modulating the immune response and its potential protective effects against ischemic brain injury in mice.</p><p><strong>Methods and results: </strong>Microglia-specific LILRB4 conditional knockout (LILRB4-KO) and overexpression transgenic (LILRB4-TG) mice were constructed by a Cre-loxP system. Then, they were used to investigate the role of LILRB4 after ischemic stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Spatial transcriptomics analysis revealed increased LILRB4 expression in the ischemic hemisphere. Single-cell RNA sequencing (scRNA-seq) identified microglia-cluster3, an ischemia-associated microglia subcluster with elevated LILRB4 expression in the ischemic brain. Flow cytometry and immunofluorescence staining showed increased CD8<sup>+</sup> T cell infiltration into the brain in LILRB4-KO-tMCAO mice. Behavioral tests, cortical perfusion maps, and infarct size measurements indicated that LILRB4-KO-tMCAO mice had more severe functional deficits and larger infarct sizes compared to Control-tMCAO and LILRB4-TG-tMCAO mice. T cell migration assays demonstrated that LILRB4-KD microglia promoted CD8<sup>+</sup> T cell recruitment and activation in vitro, which was mitigated by CCL2 inhibition and recombinant arginase-1 addition. The scRNA-seq and spatial transcriptomics identified CCL2 was predominantly secreted from activated microglia/macrophage and increased CCL2 expression in LILRB4-KD microglia, suggesting a chemokine-mediated mechanism of LILRB4.</p><p><strong>Conclusion: </strong>LILRB4 in microglia plays a crucial role in modulating the post-stroke immune response by regulating CD8<sup>+</sup> T cell infiltration and activation. Knockout of LILRB4 exacerbates ischemic brain injury by promoting CD8<sup>+</sup> T cell recruitment. Overexpression of LILRB4, conversely, offers neuroprotection. These findings highlight the therapeutic potential of targeting LILRB4 and its downstream pathways to mitigate immune-mediated damage in ischemic stroke.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord. 单细胞测序揭示神经胶质细胞通过脊髓髓鞘病变的形成参与了神经性疼痛的发展。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-08-31 DOI: 10.1186/s12974-024-03207-3
Danyang Li, Kaihong Yang, Jinlu Li, Xiaoqian Xu, Lanlan Gong, Shouwei Yue, Hui Wei, Zhenyu Yue, Yikun Wu, Sen Yin
{"title":"Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord.","authors":"Danyang Li, Kaihong Yang, Jinlu Li, Xiaoqian Xu, Lanlan Gong, Shouwei Yue, Hui Wei, Zhenyu Yue, Yikun Wu, Sen Yin","doi":"10.1186/s12974-024-03207-3","DOIUrl":"10.1186/s12974-024-03207-3","url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain (NP), which results from injury or lesion of the somatosensory nervous system, is intimately associated with glial cells. The roles of microglia and astrocytes in NP have been broadly described, while studies on oligodendrocytes have largely focused on axonal myelination. The mechanisms of oligodendrocytes and their interactions with other glial cells in NP development remain uncertain.</p><p><strong>Methods: </strong>To explore the function of the interaction of the three glial cells and their interactions on myelin development in NP, we evaluated changes in NP and myelin morphology after a chronic constriction injury (CCI) model in mice, and used single-cell sequencing to reveal the subpopulations characteristics of oligodendrocytes, microglia, and astrocytes in the spinal cord tissues, as well as their relationship with myelin lesions; the proliferation and differentiation trajectories of oligodendrocyte subpopulations were also revealed using pseudotime cell trajectory and RNA velocity analysis. In addition, we identified chemokine ligand-receptor pairs between glial cells by cellular communication and verified them using immunofluorescence.</p><p><strong>Results: </strong>Our study showed that NP peaked on day 7 after CCI in mice, a time at which myelin lesions were present in both the spinal cord and sciatic nerve. Oligodendrocytes, microglia, and astrocytes subpopulations in spinal cord tissue were heterogeneous after CCI and all were involved in suppressing the process of immune defense and myelin production. In addition, the differentiation trajectory of oligodendrocytes involved a unidirectional lattice process of OPC-1-Oligo-9, which was arrested at the Oligo-2 stage under the influence of microglia and astrocytes. And the CADM1-CADM1, NRP1-VEGFA interactions between glial cells are enhanced after CCI and they had a key role in myelin lesions and demyelination.</p><p><strong>Conclusions: </strong>Our study reveals the close relationship between the differentiation block of oligodendrocytes after CCI and their interaction with microglia and astrocytes-mediated myelin lesions and NP. CADM1/CADM1 and NRP-1/VEGFA may serve as potential therapeutic targets for use in the treatment of NP.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer's disease. IRF3 可调节神经炎症反应和阿尔茨海默病相关基因的表达。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-08-30 DOI: 10.1186/s12974-024-03203-7
Radhika Joshi, Veronika Brezani, Gabrielle M Mey, Sergi Guixé-Muntet, Marti Ortega-Ribera, Yuan Zhuang, Adam Zivny, Sebastian Werneburg, Jordi Gracia-Sancho, Gyongyi Szabo
{"title":"IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer's disease.","authors":"Radhika Joshi, Veronika Brezani, Gabrielle M Mey, Sergi Guixé-Muntet, Marti Ortega-Ribera, Yuan Zhuang, Adam Zivny, Sebastian Werneburg, Jordi Gracia-Sancho, Gyongyi Szabo","doi":"10.1186/s12974-024-03203-7","DOIUrl":"10.1186/s12974-024-03203-7","url":null,"abstract":"<p><p>The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D: IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer's disease, notably apolipoprotein-e. Using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 (ZBP1) as a target of IRF3 that is relevant across various neuroinflammatory disorders. Lastly, we show IRF3 phosphorylation and IRF3-dependent ZBP1 induction in response to Aβ in primary microglia cultures. Together, our results identify IRF3 as an important regulator of LPS and Aβ -mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. 创伤后的全身炎症及其对啮齿动物大脑神经炎症基因表达的影响。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-08-28 DOI: 10.1186/s12974-024-03205-5
Cassie J Rowe, Uloma Nwaolu, Laura Martin, Benjamin J Huang, Josef Mang, Daniela Salinas, Cody D Schlaff, Sennay Ghenbot, Jefferson L Lansford, Benjamin K Potter, Seth A Schobel, Eric R Gann, Thomas A Davis
{"title":"Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain.","authors":"Cassie J Rowe, Uloma Nwaolu, Laura Martin, Benjamin J Huang, Josef Mang, Daniela Salinas, Cody D Schlaff, Sennay Ghenbot, Jefferson L Lansford, Benjamin K Potter, Seth A Schobel, Eric R Gann, Thomas A Davis","doi":"10.1186/s12974-024-03205-5","DOIUrl":"10.1186/s12974-024-03205-5","url":null,"abstract":"<p><strong>Background: </strong>Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked.</p><p><strong>Methods: </strong>Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi).</p><p><strong>Results: </strong>Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved.</p><p><strong>Conclusions: </strong>Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信