Journal of Neuroinflammation最新文献

筛选
英文 中文
Peripheral immune cell dysregulation following diffuse traumatic brain injury in pigs. 猪弥漫性创伤性脑损伤后外周免疫细胞失调。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-18 DOI: 10.1186/s12974-024-03317-y
Kathryn L Wofford, Kevin D Browne, David J Loane, David F Meaney, D Kacy Cullen
{"title":"Peripheral immune cell dysregulation following diffuse traumatic brain injury in pigs.","authors":"Kathryn L Wofford, Kevin D Browne, David J Loane, David F Meaney, D Kacy Cullen","doi":"10.1186/s12974-024-03317-y","DOIUrl":"10.1186/s12974-024-03317-y","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a global health problem affecting millions of individuals annually, potentially resulting in persistent neuropathology, chronic neurological deficits, and death. However, TBI not only affects neural tissue, but also affects the peripheral immune system's homeostasis and physiology. TBI disrupts the balanced signaling between the brain and the peripheral organs, resulting in immunodysregulation and increasing infection susceptibility. Indeed, secondary infections following TBI worsen neurological outcomes and are a major source of mortality and morbidity. Despite the compelling link between the damaged brain and peripheral immune functionality, little is known about how injury severity affects the peripheral immune system in closed-head diffuse TBI, the most common clinical presentation including all concussions. Therefore, we characterized peripheral blood mononuclear cells (PBMCs) and plasma changes over time and across injury severity using an established large-animal TBI model of closed-head, non-impact diffuse rotational acceleration in pigs. Across all timepoints and injury levels, we did not detect any changes to plasma cytokine concentrations. However, changes to the PBMCs were detectable and much more robust. We observed the concentration and physiology of circulating PBMCs changed in an injury severity-dependent manner, with most cellular changes occurring within the first 10 days following a high rotational velocity injury. Here, we report changes in the concentrations of myeloid and T cells, changes in PBMC composition, and changes in phagocytic clearance over time. Together, these data suggest that following a diffuse brain injury in a clinically relevant large-animal TBI model, the immune system exhibits perturbations that are detectable into the subacute timeframe. These findings invite future investigations into therapeutic interventions targeting peripheral immunity and the potential for peripheral blood cellular characterization as a diagnostic tool.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"324"},"PeriodicalIF":9.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of noradrenergic inhibition on neuroinflammation and pathophysiology in mouse models of Alzheimer's disease. 去甲肾上腺素能抑制对阿尔茨海默病小鼠模型神经炎症和病理生理的影响。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-18 DOI: 10.1186/s12974-024-03306-1
Andrew K Evans, Heui Hye Park, Claire E Woods, Rachel K Lam, Daniel Ryskamp Rijsketic, Christine Xu, Emily K Chu, Peter Ciari, Sarah Blumenfeld, Laura M Vidano, Nay Lui Saw, Boris D Heifets, Mehrdad Shamloo
{"title":"Impact of noradrenergic inhibition on neuroinflammation and pathophysiology in mouse models of Alzheimer's disease.","authors":"Andrew K Evans, Heui Hye Park, Claire E Woods, Rachel K Lam, Daniel Ryskamp Rijsketic, Christine Xu, Emily K Chu, Peter Ciari, Sarah Blumenfeld, Laura M Vidano, Nay Lui Saw, Boris D Heifets, Mehrdad Shamloo","doi":"10.1186/s12974-024-03306-1","DOIUrl":"10.1186/s12974-024-03306-1","url":null,"abstract":"<p><p>Norepinephrine (NE) modulates cognitive function, arousal, attention, and responses to novelty and stress, and it also regulates neuroinflammation. We previously demonstrated behavioral and immunomodulatory effects of beta-adrenergic pharmacology in mouse models of Alzheimer's disease (AD). The current studies were designed to block noradrenergic signaling in 5XFAD mice through (1) chemogenetic inhibition of the locus coeruleus (LC), (2) pharmacologic blocking of β-adrenergic receptors, and (3) conditional deletion of β1- or β2-adrenergic receptors (adrb1 or adrb2) in microglia.First, brain-wide AD pathology was mapped in 3D by imaging immunolabeled, cleared 5XFAD brains to assess the overlap between amyloid beta (Aβ) pathology, reactive microglia, and the loss of tyrosine hydroxylase (TH) expression in the catecholaminergic system. To examine the effects of inhibiting the LC NE system in the 5XFAD model, inhibitory (Gi) DREADD receptors were expressed specifically in LC NE neurons. LC NE neurons were chronically inhibited through the subcutaneous pump administration of the DREADD agonist clozapine-N-oxide (CNO). Plasma and brains were collected for assessment of neuroinflammation and pathology. A separate cohort of 5XFAD mice was chronically dosed with the beta-adrenergic antagonist propranolol or vehicle and evaluated for behavior, as well as post-mortem neuroinflammation and pathology. Finally, we used 5XFAD mice with conditional deletion of either adrb1 or adrb2 in microglia to assess neuroinflammation and pathology mediated by β-adrenergic signaling.Using iDISCO+, light sheet fluorescence microscopy, and novel analyses, we detected widespread microgliosis and Aβ pathology, along with modest TH downregulation in fibers across multiple brain regions, in contrast to the spatially limited TH downregulation observed in neurons. Both chemogenetic inhibition of LC adrenergic signaling and pharmacological inhibition of beta-adrenergic receptors potentiated neuroinflammation without altering Aβ pathology. Conditional deletion of adrb1 in microglia did not affect neuroinflammation. Conditional deletion of adrb2 in microglia attenuated inflammation and pathology in females but had no effect in males. Overall, these data support previous observations demonstrating the immunomodulatory effects of beta-adrenergic signaling in the pathophysiology of brain disorders and suggest that adrenergic receptors on cell types other than microglia, such as astrocytes, may mediate some of the disease-modifying effects of β-adrenergic agonists in the brain.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"322"},"PeriodicalIF":9.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia in the aged brain develop a hypoactive molecular phenotype after surgery. 老年大脑中的小胶质细胞在手术后出现活性低下的分子表型。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-18 DOI: 10.1186/s12974-024-03307-0
Zhuoran Yin, Anna K Leonard, Carl M Porto, Zhongcong Xie, Sebastian Silveira, Deborah J Culley, Oleg Butovsky, Gregory Crosby
{"title":"Microglia in the aged brain develop a hypoactive molecular phenotype after surgery.","authors":"Zhuoran Yin, Anna K Leonard, Carl M Porto, Zhongcong Xie, Sebastian Silveira, Deborah J Culley, Oleg Butovsky, Gregory Crosby","doi":"10.1186/s12974-024-03307-0","DOIUrl":"10.1186/s12974-024-03307-0","url":null,"abstract":"<p><strong>Background: </strong>Microglia, the resident immune cells of the brain, play a crucial role in maintaining homeostasis in the central nervous system (CNS). However, they can also contribute to neurodegeneration through their pro-inflammatory properties and phagocytic functions. Acute post-operative cognitive deficits have been associated with inflammation, and microglia have been implicated primarily based on morphological changes. We investigated the impact of surgery on the microglial transcriptome to test the hypothesis that surgery produces an age-dependent pro-inflammatory phenotype in these cells.</p><p><strong>Methods: </strong>Three-to-five and 20-to-22-month-old C57BL/6 mice were anesthetized with isoflurane for an abdominal laparotomy, followed by sacrifice either 6 or 48 h post-surgery. Age-matched controls were exposed to carrier gas. Cytokine concentrations in plasma and brain tissue were evaluated using enzyme-linked immunosorbent assays (ELISA). Iba1<sup>+</sup> cell density and morphology were determined by immunohistochemistry. Microglia from both surgically treated mice and age-matched controls were isolated by a well-established fluorescence-activated cell sorting (FACS) protocol. The microglial transcriptome was then analyzed using quantitative polymerase chain reaction (qPCR) and RNA sequencing (RNAseq).</p><p><strong>Results: </strong>Surgery induced an elevation in plasma cytokines in both age groups. Notably, increased CCL2 was observed in the brain post-surgery, with a greater change in old compared to young mice. Age, rather than the surgical procedure, increased Iba1 immunoreactivity and the number of Iba1<sup>+</sup> cells in the hippocampus. Both qPCR and RNAseq analysis demonstrated suppression of neuroinflammation at 6 h after surgery in microglia isolated from aged mice. A comparative analysis of differentially expressed genes (DEGs) with previously published neurodegenerative microglia phenotype (MGnD), also referred to disease-associated microglia (DAM), revealed that surgery upregulates genes typically downregulated in the context of neurodegenerative diseases. These surgery-induced changes resolved by 48 h post-surgery and only a few DEGs were detected at that time point, indicating that the hypoactive phenotype of microglia is transient.</p><p><strong>Conclusions: </strong>While anesthesia and surgery induce pro-inflammatory changes in the plasma and brain of mice, microglia adopt a homeostatic molecular phenotype following surgery. This effect seems to be more pronounced in aged mice and is transient. These results challenge the prevailing assumption that surgery activates microglia in the aged brain.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"323"},"PeriodicalIF":9.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. Tyro3和Gas6与多发性硬化症患者的白质和髓鞘完整性有关。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-13 DOI: 10.1186/s12974-024-03315-0
Igal Rosenstein, Lenka Novakova, Hlin Kvartsberg, Anna Nordin, Sofia Rasch, Elzbieta Rembeza, Sofia Sandgren, Clas Malmeström, Stefanie Fruhwürth, Markus Axelsson, Kaj Blennow, Henrik Zetterberg, Jan Lycke
{"title":"Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis.","authors":"Igal Rosenstein, Lenka Novakova, Hlin Kvartsberg, Anna Nordin, Sofia Rasch, Elzbieta Rembeza, Sofia Sandgren, Clas Malmeström, Stefanie Fruhwürth, Markus Axelsson, Kaj Blennow, Henrik Zetterberg, Jan Lycke","doi":"10.1186/s12974-024-03315-0","DOIUrl":"10.1186/s12974-024-03315-0","url":null,"abstract":"<p><strong>Background: </strong>The Gas6/TAM (Tyro3, Axl, and Mer) receptor system has been implicated in demyelination and delayed remyelination in experimental animal models, but data in humans are scarce. We aimed to investigate the role of Gas6/TAM in neurodegenerative processes in multiple sclerosis (MS).</p><p><strong>Methods: </strong>From a prospective 5-year follow-up study, soluble Gas6/TAM biomarkers were analyzed in cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay (ELISA) at baseline in patients with relapsing-remitting MS (RRMS) (n = 40), progressive MS (PMS) (n = 20), and healthy controls (HC) (n = 25). Brain volumes, including myelin content (MyC) and white matter (WM) were measured by synthetic magnetic resonance imaging at baseline, 12 months, and 60-month follow-up. Associations with brain volume changes were investigated in multivariable linear regression models. Gas6/TAM concentrations were also determined at 12 months follow-up in RRMS to assess treatment response.</p><p><strong>Results: </strong>Baseline concentrations of Tyro3, Axl, and Gas6 were significantly higher in PMS vs. RRMS and HC. Mer was higher in PMS vs. HC. Tyro3 and Gas6 were associated with reduced WM (β = 25.5, 95% confidence interval [CI] [6.11-44.96, p = 0.012; β = 11.4, 95% CI [0.42-22.4], p = 0.042, respectively) and MyC (β = 7.95, 95%CI [1.84-14.07], p = 0.012; β = 4.4, 95%CI [1.04-7.75], p = 0.012 respectively) at 60 months. Patients with evidence of remyelination at last follow-up had lower baseline soluble Tyro3 (p = 0.033) and Gas6 (p = 0.014). Except Mer, Gas6/TAM concentrations did not change with treatment in RRMS.</p><p><strong>Discussion: </strong>Our data indicate a potential role for the Gas6/TAM receptor system in neurodegenerative processes influencing demyelination and ineffective remyelination.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"320"},"PeriodicalIF":9.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice. 草甘膦暴露加剧了小鼠的神经炎症和阿尔茨海默病样病理,尽管有6个月的恢复期。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-04 DOI: 10.1186/s12974-024-03290-6
Samantha K Bartholomew, Wendy Winslow, Ritin Sharma, Khyatiben V Pathak, Savannah Tallino, Jessica M Judd, Hector Leon, Julie Turk, Patrick Pirrotte, Ramon Velazquez
{"title":"Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice.","authors":"Samantha K Bartholomew, Wendy Winslow, Ritin Sharma, Khyatiben V Pathak, Savannah Tallino, Jessica M Judd, Hector Leon, Julie Turk, Patrick Pirrotte, Ramon Velazquez","doi":"10.1186/s12974-024-03290-6","DOIUrl":"10.1186/s12974-024-03290-6","url":null,"abstract":"<p><strong>Background: </strong>Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined.</p><p><strong>Methods: </strong>We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period.</p><p><strong>Results: </strong>We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma.</p><p><strong>Conclusion: </strong>Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"316"},"PeriodicalIF":9.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns. 阿尔茨海默病、帕金森病和路易体痴呆的自身抗体谱:在疾病特异性病理模式中,对α -突触核蛋白、β -淀粉样蛋白和tau蛋白的IgG亲和力和IgG/IgM/IgA反应发生改变
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-03 DOI: 10.1186/s12974-024-03293-3
Luisa Knecht, Katrine Dalsbøl, Anja Hviid Simonsen, Falk Pilchner, Jean Alexander Ross, Kristian Winge, Lisette Salvesen, Sara Bech, Anne-Mette Hejl, Annemette Løkkegaard, Steen G Hasselbalch, Richard Dodel, Susana Aznar, Gunhild Waldemar, Tomasz Brudek, Jonas Folke
{"title":"Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns.","authors":"Luisa Knecht, Katrine Dalsbøl, Anja Hviid Simonsen, Falk Pilchner, Jean Alexander Ross, Kristian Winge, Lisette Salvesen, Sara Bech, Anne-Mette Hejl, Annemette Løkkegaard, Steen G Hasselbalch, Richard Dodel, Susana Aznar, Gunhild Waldemar, Tomasz Brudek, Jonas Folke","doi":"10.1186/s12974-024-03293-3","DOIUrl":"10.1186/s12974-024-03293-3","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative disorders marked by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to maintain homeostasis and were previously found altered in AD and PD patients, among others.</p><p><strong>Main text: </strong>We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and affinity correlations were identified, highlighting altered immune responses.</p><p><strong>Conclusion: </strong>This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies against pathological proteins. These insights into the autoreactive immune system's role in neurodegeneration suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding and possibly diagnosing these conditions.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"317"},"PeriodicalIF":9.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ketogenic diet modulates immune cell transcriptional landscape and ameliorates experimental autoimmune uveitis in mice. 生酮饮食调节免疫细胞转录景观和改善实验性自身免疫性葡萄膜炎小鼠。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-03 DOI: 10.1186/s12974-024-03308-z
Runping Duan, Tianfu Wang, Zhaohuai Li, Loujing Jiang, Xiaoyang Yu, Daquan He, Tianyu Tao, Xiuxing Liu, Zhaohao Huang, Lei Feng, Wenru Su
{"title":"Ketogenic diet modulates immune cell transcriptional landscape and ameliorates experimental autoimmune uveitis in mice.","authors":"Runping Duan, Tianfu Wang, Zhaohuai Li, Loujing Jiang, Xiaoyang Yu, Daquan He, Tianyu Tao, Xiuxing Liu, Zhaohao Huang, Lei Feng, Wenru Su","doi":"10.1186/s12974-024-03308-z","DOIUrl":"10.1186/s12974-024-03308-z","url":null,"abstract":"<p><strong>Background: </strong>Uveitis manifests as immune-mediated inflammatory disorders within the eye, posing a serious threat to vision. The ketogenic diet (KD) has emerged as a promising dietary intervention, yet its impact on the immune microenvironments and role in uveitis remains unclear.</p><p><strong>Methods: </strong>Utilizing single-cell RNA sequencing (scRNA-seq) data from lymph node and retina of mice, we conduct a comprehensive investigation into the effects of KD on immune microenvironments. Flow cytometry is conducted to verify the potential mechanisms.</p><p><strong>Results: </strong>This study demonstrates that KD alters the composition and function of immune profiles. Specifically, KD promotes the differentiation of Treg cells and elevates its proportion in heathy mice. In response to experimental autoimmune uveitis challenges, KD alleviates the inflammatory symptoms, lowers CD4<sup>+</sup> T cell pathogenicity, and corrects the Th17/Treg imbalance. Additionally, KD decreases the proportion of Th17 cell and increases Treg cells in the retina. Analysis of combined retinal and CDLN immune cells reveals that retinal immune cells, particularly CD4<sup>+</sup> T cells, exhibit heightened inflammatory responses, which KD partially reverses.</p><p><strong>Conclusions: </strong>The KD induces inhibitory structural and functional alterations in immune cells from lymph nodes to retina, suggesting its potential as a therapy for uveitis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"319"},"PeriodicalIF":9.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. 在慢性偏头痛小鼠模型中,二甲双胍通过TREM2-SYK信号通路调节神经炎症,从而减轻中枢致敏。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-03 DOI: 10.1186/s12974-024-03313-2
Zhenzhen Fan, Dandan Su, Zi Chao Li, Songtang Sun, Zhaoming Ge
{"title":"Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine.","authors":"Zhenzhen Fan, Dandan Su, Zi Chao Li, Songtang Sun, Zhaoming Ge","doi":"10.1186/s12974-024-03313-2","DOIUrl":"10.1186/s12974-024-03313-2","url":null,"abstract":"<p><strong>Background: </strong>Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms.</p><p><strong>Methods: </strong>A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids.</p><p><strong>Results: </strong>Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406.</p><p><strong>Conclusions: </strong>Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"318"},"PeriodicalIF":9.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRPM7 contributes to pyroptosis and its involvement in status epilepticus. TRPM7参与焦亡并参与癫痫持续状态。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-12-01 DOI: 10.1186/s12974-024-03292-4
Xin Tong, Yu Tong, Jiahe Zheng, Ruixue Shi, Hongyue Liang, Meixuan Li, Yulu Meng, Jian Shi, Dongyi Zhao, Corey Ray Seehus, Jialu Wang, Xiaoxue Xu, Tomasz Boczek, Sayuri Suzuki, Andrea Fleig, Reinhold Penner, Naining Zhang, Jianjun Xu, Jingjing Duan, Zhiyi Yu, Wuyang Wang, Weidong Zhao, Feng Guo
{"title":"TRPM7 contributes to pyroptosis and its involvement in status epilepticus.","authors":"Xin Tong, Yu Tong, Jiahe Zheng, Ruixue Shi, Hongyue Liang, Meixuan Li, Yulu Meng, Jian Shi, Dongyi Zhao, Corey Ray Seehus, Jialu Wang, Xiaoxue Xu, Tomasz Boczek, Sayuri Suzuki, Andrea Fleig, Reinhold Penner, Naining Zhang, Jianjun Xu, Jingjing Duan, Zhiyi Yu, Wuyang Wang, Weidong Zhao, Feng Guo","doi":"10.1186/s12974-024-03292-4","DOIUrl":"https://doi.org/10.1186/s12974-024-03292-4","url":null,"abstract":"<p><strong>Background: </strong>Pyroptosis, a novel form of programmed cell death, has been implicated in neurodegeneration diseases. However, its role in status epilepticus (SE)-a condition characterized by prolonged or repeated seizures-remains inadequately understood.</p><p><strong>Methods: </strong>SE were induced by intraperitoneal injection of pilocarpine (PILO). Neuronal excitability was assessed through electroencephalogram (EEG) recordings and patch clamp. Chromatin immunoprecipitation (ChIP) assay was applied to verify the interaction of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) protein with the promoters of Nlrp3 (the gene encoding NOD-like receptor family pyrin domain containing 3) and Trpm7 (transient receptor potential melastatin 7). To further investigate the role of TRPM7 in SE, AAV-sh-TRPM7-EGFP transfected mice and TRPM7 conditional knockout (TRPM7-CKO) mice were utilized.</p><p><strong>Results: </strong>Our findings revealed elevated levels of IL-18 and IL-1β levels in primary epilepsy patients, along with increased expression level of the TRPM7 in SE models. Knockdown of TRPM7 alleviated neuronal damage and pyroptosis, reversing PILO-treated neuronal hyperexcitability. We demonstrated that p-STAT3 binds to the promoters of both Trpm7 and Nlrp3, modulating their transcriptions in SE. Importantly, inhibition of TRPM7 with NS8593, and inflammasome inhibition with MCC950, alleviated neuronal hyperexcitability and pyroptosis in SE. A new compound, SDUY-225, formulated based on the structure of NS8593 mitigated neuronal damage, pyroptosis, and hyperexcitability.</p><p><strong>Conclusions: </strong>TRPM7 contributes to pyroptosis in SE, establishing a positive feedback loop involving the p-STAT3/TRPM7/Zn<sup>2+</sup>/p-STAT3 signaling pathway. Findings in this study raise the possibility that targeting TRPM7 and NLRP3 represents a promising therapeutic approach for SE.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"315"},"PeriodicalIF":9.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sitagliptin eye drops prevent the impairment of retinal neurovascular unit in the new Trpv2+/- rat model. 西格列汀滴眼液对Trpv2+/-模型大鼠视网膜神经血管单元损伤的预防作用。
IF 9.3 1区 医学
Journal of Neuroinflammation Pub Date : 2024-11-30 DOI: 10.1186/s12974-024-03283-5
Hugo Ramos, Josy Augustine, Burak M Karan, Cristina Hernández, Alan W Stitt, Tim M Curtis, Rafael Simó
{"title":"Sitagliptin eye drops prevent the impairment of retinal neurovascular unit in the new Trpv2<sup>+/-</sup> rat model.","authors":"Hugo Ramos, Josy Augustine, Burak M Karan, Cristina Hernández, Alan W Stitt, Tim M Curtis, Rafael Simó","doi":"10.1186/s12974-024-03283-5","DOIUrl":"https://doi.org/10.1186/s12974-024-03283-5","url":null,"abstract":"<p><p>Impaired function of the retinal neurovascular unit (NVU) is an early event in diabetic retinopathy (DR). It has been previously shown that topical delivery of the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin can protect against diabetes-mediated dysfunction of the retinal NVU in the db/db mouse. The aim of the present study was to examine whether sitagliptin could prevent the DR-like lesions within the NVU of the new non-diabetic model of DR, the Trpv2 knockout rat (Trpv2<sup>+/-</sup>). For that purpose, at 3 months of age, Trpv2<sup>+/-</sup> rats were topically treated twice daily for two weeks with sitagliptin or PBS-vehicle eyedrops. Trpv2<sup>+/+</sup> rats treated with vehicle served as the control group. Body weight and glycemia were monitored. Optical coherence tomography recordings, fundus images and retinal samples were obtained to evaluate sitagliptin effects. The results revealed that sitagliptin eye drops had no effect on body weight or glycemia. Vehicle-treated Trpv2<sup>+/-</sup> rats exhibited retinal thinning and larger diameters of major retinal blood vessels, upregulation of inflammatory factors and oxidative markers, glial activation and formation of acellular capillaries. However, topical administration of sitagliptin significantly prevented all these abnormalities. In conclusion, sitagliptin eye drops exert a protective effect against DR-like lesions in Trpv2<sup>+/-</sup> rats. Our results suggest that sitagliptin eye drops carry significant potential to treat not only early-stages of DR but also other diseases with impairment of the NVU unrelated to diabetes.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"312"},"PeriodicalIF":9.3,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信