Journal of Nucleic Acids最新文献

筛选
英文 中文
Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application In Vivo. 适配体作为去污测定试剂(适配体去污测定):从环境到体内的潜在应用。
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-10-26 DOI: 10.1155/2017/3712070
Mawethu Pascoe Bilibana, Marimuthu Citartan, Tzi Shien Yeoh, Timofey S Rozhdestvensky, Thean-Hock Tang
{"title":"Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application <i>In Vivo</i>.","authors":"Mawethu Pascoe Bilibana,&nbsp;Marimuthu Citartan,&nbsp;Tzi Shien Yeoh,&nbsp;Timofey S Rozhdestvensky,&nbsp;Thean-Hock Tang","doi":"10.1155/2017/3712070","DOIUrl":"https://doi.org/10.1155/2017/3712070","url":null,"abstract":"<p><p>The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"3712070"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3712070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35634640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Physiological Roles of DNA Double-Strand Breaks. DNA 双链断裂的生理作用
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-10-18 DOI: 10.1155/2017/6439169
Farhaan A Khan, Syed O Ali
{"title":"Physiological Roles of DNA Double-Strand Breaks.","authors":"Farhaan A Khan, Syed O Ali","doi":"10.1155/2017/6439169","DOIUrl":"10.1155/2017/6439169","url":null,"abstract":"<p><p>Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6439169"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35643797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic Identification of Hevea brasiliensis EST-SSR Markers and Primer Screening. 巴西橡胶树EST-SSR标记的系统鉴定及引物筛选
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-01-23 DOI: 10.1155/2017/6590902
Benjun Hou, Suping Feng, Yaoting Wu
{"title":"Systemic Identification of <i>Hevea brasiliensis</i> EST-SSR Markers and Primer Screening.","authors":"Benjun Hou,&nbsp;Suping Feng,&nbsp;Yaoting Wu","doi":"10.1155/2017/6590902","DOIUrl":"https://doi.org/10.1155/2017/6590902","url":null,"abstract":"<p><p>This research aimed to systematically identify and preliminarily validate the <i>Hevea brasiliensis</i> expressed sequence tag (EST) information using Simple Sequence Repeat (SSR) and provide evidence for further development of SSR molecular marker. The definition of general SSR features of <i>Hevea</i> EST splicing sequences and development of SSR primers founded the basis of diversity analysis and variety identification for <i>Hevea</i> tree resource. 1134 SSR loci were identified in the EST splicing sequence and distributed in 840 Unigene. The occurrence rate of SSR loci was 23.9%, and the average distribution distance of EST-SSR was 2.59 kb. The major repeat type was mononucleotide repeat motif, which accounted for 38.89%, while the corresponding value was 36.95% for dinucleotide repeat motif and 18.17% for trinucleotide repeat motif; the proportion of other motifs was only 5.99%. The superior repeat motifs for mononucleotide, dinucleotide, and trinucleotide were A/T, AG/CT, and AAG/CTT, respectively. 739 pair of primers were designed for 1134 SSR loci. PCR amplification was performed on <i>Hevea</i> Reyan5-11, Reyan87-6-47, and PR107, and 180 pairs of primers were selected which were able to amplify polymorphism bands.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6590902"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6590902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34760158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. 蛋白质与核酸鸟嘌呤四重结构相互作用的表征。
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-11-09 DOI: 10.1155/2017/9675348
Ewan K S McRae, Evan P Booy, Gay Pauline Padilla-Meier, Sean A McKenna
{"title":"On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids.","authors":"Ewan K S McRae, Evan P Booy, Gay Pauline Padilla-Meier, Sean A McKenna","doi":"10.1155/2017/9675348","DOIUrl":"10.1155/2017/9675348","url":null,"abstract":"<p><p>Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9675348"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9675348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35664421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Expression of Genes and Their Polymorphism Influences the Risk of Knee Osteoarthritis. 基因表达及其多态性影响膝关节骨关节炎的风险。
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-10-09 DOI: 10.1155/2017/3138254
Abhishek Mishra, Rajeshwar Nath Srivastava, Sachin Awasthi, Devendra Parmar, Priya Mishra
{"title":"Expression of Genes and Their Polymorphism Influences the Risk of Knee Osteoarthritis.","authors":"Abhishek Mishra,&nbsp;Rajeshwar Nath Srivastava,&nbsp;Sachin Awasthi,&nbsp;Devendra Parmar,&nbsp;Priya Mishra","doi":"10.1155/2017/3138254","DOIUrl":"https://doi.org/10.1155/2017/3138254","url":null,"abstract":"<p><strong>Introduction: </strong>Genetic factors including the level of expression of the fingerprint of genes involved in the development of bones and cartilage such as GDF-5 or ESR-<i>α</i> or CALM-1 are known to be strong determinants of the osteoarthritis (OA) in Caucasian and Oriental populations. Because of high prevalence of OA in Indian population and availability of limited genetic data, we determined whether similar genetic factors are involved in Indians as well.</p><p><strong>Methods: </strong>A case control study was carried out involving 500 patients of knee OA and equal number of healthy controls. Genotyping analyses in whole blood, mRNA, and protein expressions in peripheral blood lymphocytes (PBLs) were performed using established protocols.</p><p><strong>Results: </strong>Our results showed a significantly decreased level of mRNA and protein expressions for GDF-5, ESR-<i>α</i>, and CALM-1 genes in PBLs of OA cases when compared to healthy controls. The frequency of variant genotypes of these genes was also increased significantly in cases of OA compared to controls.</p><p><strong>Conclusion: </strong>Our results demonstrated that the decrease in expression of GDF-5, ESR-<i>α</i>, and CALM-1 in PBLs and association of polymorphism in these genes may be important in predicting the severity and thereby the progression of OA in Indian population.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"3138254"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3138254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35247370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? 合成核苷酸和天然碱基损伤如何改变g -四重核酸的结构稳定性?
IF 1.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-10-18 DOI: 10.1155/2017/1641845
Janos Sagi
{"title":"In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?","authors":"Janos Sagi","doi":"10.1155/2017/1641845","DOIUrl":"10.1155/2017/1641845","url":null,"abstract":"<p><p>Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred <i>syn</i> or <i>anti</i> N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the <i>in vitro</i> action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"1641845"},"PeriodicalIF":1.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35643795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of DNA Aptamers for Ovarian Cancer Biomarker CA125 Using One-Pot SELEX and High-Throughput Sequencing. 使用单锅SELEX和高通量测序选择卵巢癌生物标志物CA125的DNA适体
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-02-09 DOI: 10.1155/2017/9879135
Delia J Scoville, Tae Kyu Brian Uhm, Jamie A Shallcross, Rebecca J Whelan
{"title":"Selection of DNA Aptamers for Ovarian Cancer Biomarker CA125 Using One-Pot SELEX and High-Throughput Sequencing.","authors":"Delia J Scoville,&nbsp;Tae Kyu Brian Uhm,&nbsp;Jamie A Shallcross,&nbsp;Rebecca J Whelan","doi":"10.1155/2017/9879135","DOIUrl":"https://doi.org/10.1155/2017/9879135","url":null,"abstract":"<p><p>CA125 is a mucin glycoprotein whose concentration in serum correlates with a woman's risk of developing ovarian cancer and also indicates response to therapy in diagnosed patients. Accurate detection of this large, complex protein in patient samples is of great clinical relevance. We suggest that powerful new diagnostic tools may be enabled by the development of nucleic acid aptamers with affinity for CA125. Here, we report on our use of One-Pot SELEX to isolate single-stranded DNA aptamers with affinity for CA125, followed by high-throughput sequencing of the selected oligonucleotides. This data-rich approach, combined with bioinformatics tools, enabled the entire selection process to be characterized. Using fluorescence anisotropy and affinity probe capillary electrophoresis, the binding affinities of four aptamer candidates were evaluated. Two aptamers, CA125_1 and CA125_12, both without primers, were found to bind to clinically relevant concentrations of the protein target. Binding was differently influenced by the presence of Mg<sup>2+</sup> ions, being required for binding of CA125_1 and abrogating binding of CA125_12. In conclusion, One-Pot SELEX was found to be a promising selection method that yielded DNA aptamers to a clinically important protein target.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9879135"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9879135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34800867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Corrigendum to "Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees". “使用C5.0决策树的监督机器学习预测植物MicroRNA”的勘误表。
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-10-24 DOI: 10.1155/2017/7876832
Philip H Williams, Rodney P Eyles, Georg Weiller
{"title":"Corrigendum to \"Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees\".","authors":"Philip H Williams,&nbsp;Rodney P Eyles,&nbsp;Georg Weiller","doi":"10.1155/2017/7876832","DOIUrl":"https://doi.org/10.1155/2017/7876832","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2012/652979.].</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"7876832"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7876832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35219385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The 2D Structure of the T. brucei Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding. 布氏体预编辑RPS12 mRNA的二维结构不受大分子拥挤的影响
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-06-18 DOI: 10.1155/2017/6067345
W-Matthias Leeder, Stephan Voskuhl, H Ulrich Göringer
{"title":"The 2D Structure of the <i>T. brucei</i> Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding.","authors":"W-Matthias Leeder,&nbsp;Stephan Voskuhl,&nbsp;H Ulrich Göringer","doi":"10.1155/2017/6067345","DOIUrl":"https://doi.org/10.1155/2017/6067345","url":null,"abstract":"<p><p>Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme \"crowding\" conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6067345"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6067345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35160859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Telomeric G-Quadruplexes: From Human to Tetrahymena Repeats. 端粒g -四叠体:从人类到四膜虫重复序列。
IF 2.3
Journal of Nucleic Acids Pub Date : 2017-01-01 Epub Date: 2017-12-28 DOI: 10.1155/2017/9170371
Erika Demkovičová, Ľuboš Bauer, Petra Krafčíková, Katarína Tlučková, Petra Tóthova, Andrea Halaganová, Eva Valušová, Viktor Víglaský
{"title":"Telomeric G-Quadruplexes: From Human to <i>Tetrahymena</i> Repeats.","authors":"Erika Demkovičová,&nbsp;Ľuboš Bauer,&nbsp;Petra Krafčíková,&nbsp;Katarína Tlučková,&nbsp;Petra Tóthova,&nbsp;Andrea Halaganová,&nbsp;Eva Valušová,&nbsp;Viktor Víglaský","doi":"10.1155/2017/9170371","DOIUrl":"https://doi.org/10.1155/2017/9170371","url":null,"abstract":"<p><p>The human telomeric and protozoal telomeric sequences differ only in one purine base in their repeats; TTAGGG in telomeric sequences; and TTGGGG in protozoal sequences. In this study, the relationship between G-quadruplexes formed from these repeats and their derivatives is analyzed and compared. The human telomeric DNA sequence G<sub>3</sub>(T<sub>2</sub>AG<sub>3</sub>)<sub>3</sub> and related sequences in which each adenine base has been systematically replaced by a guanine were investigated; the result is <i>Tetrahymena</i> repeats. The substitution does not affect the formation of G-quadruplexes but may cause differences in topology. The results also show that the stability of the substituted derivatives increased in sequences with greater number of substitutions. In addition, most of the sequences containing imperfections in repeats which were analyzed in this study also occur in human and <i>Tetrahymena</i> genomes. Generally, the presence of G-quadruplex structures in any organism is a source of limitations during the life cycle. Therefore, a fuller understanding of the influence of base substitution on the structural variability of G-quadruplexes would be of considerable scientific value.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9170371"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9170371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35831976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信