{"title":"Enhanced adsorption of ceftriaxone antibiotics from water by activated carbon derived from agriculture products waste","authors":"Khuloud A. Alibrahim","doi":"10.1002/jmr.3016","DOIUrl":"10.1002/jmr.3016","url":null,"abstract":"<p>The present work determines efficiency of domestic food waste like tea waste in removing pharmaceutical waste such as ceftriaxone (CEF) from synthetic wastewater. Carbonaceous material; Tea waste activated carbon (TAC) has been employed and it showed high removal capacity of 787.5 mg/g. TAC was characterized using; XPS, XRD, SEM, FT-IR, and BET as well as it approved that the adsorbent a has high surface area of .6 m<sup>2</sup>/g. Various experimental parameters are evaluated for the removal efficiency of the synthesized adsorbent under the present study. During the adsorption study through batch experiments, it approved that the adsorption isotherm was fitted to Langmuir, while kinetically fitted to pseudo-second-order; the adsorption process was chemisorption process as the adsorption energy was 23.7 kJ mol<sup>−1</sup>. From evaluation thermodynamic parameters the adsorption reaction was endothermic and spontaneous reaction. The different real samples spiked with CEF and studies the efficiency of TAC to remove it. On the other hand, investigated the regeneration efficiency of the TAC and exhibit high regeneration efficiency as it will be used after four cycles with good efficiency of about 84.2%.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9681925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fahimeh Otovat, Mohammad Reza Bozorgmehr, Ali Mahmoudi, Ali Morsali
{"title":"Porphyrin-based ligand interaction with G-quadruplex: Metal cation effects","authors":"Fahimeh Otovat, Mohammad Reza Bozorgmehr, Ali Mahmoudi, Ali Morsali","doi":"10.1002/jmr.3017","DOIUrl":"10.1002/jmr.3017","url":null,"abstract":"<p>The G-quadruplex planar-ligand complex is used to detect heavy metal cations such as Ag<sup>+</sup>, Cu<sup>2+</sup>, Pb<sup>2+</sup>, Hg<sup>2+</sup>, organic molecules, nucleic acids, and proteins. The interaction of the three planar porphyrins (L1), 5,10,15,20-tetrakis (1-ethyl-1-λ<sup>4</sup>-pyridine-4-yl) porphyrin (L2), and 5,10,15,20-tetrakis (1-methyl-1-λ<sup>4</sup>-pyridine-4-yl) porphyrin (L3), coming from the porphyrin family, with G-quadruplex obtained from human DNA telomeres in the presence of lithium, sodium, potassium, rubidium, cesium, magnesium, and calcium ions was studied by molecular dynamics simulation. When G-quadruplex containing divalent ions of magnesium and calcium interacts with L1, L2, and L3 ligands, the hydrogen bonds of the lower G-quadruplex sheet are more affected by ligands and the distance between guanines in the lower tetrad increases. In the case of G-quadruplex interactions containing monovalent ions with ligands, the hydrogen bond between the sheets does not follow a specific trend. For example, in the presence of lithium ions, the upper and middle sheets are more affected by ligands, while they are less affected by ligands in the presence of sodium. The binding pocket and the binding energy of the three ligands to the G-quadruplex were also obtained in the various systems. The results show that ligands make the G-quadruplex more stable through the penetration between the sheets and the interaction with the loops. Among the ligands mentioned, the interaction level of the ligand L2 is greater than the others. Our calculations are consistent with the previous experimental observations so that it can help to understand the molecular mechanism of porphyrin interaction and its derivatives with the G-quadruplex.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9841253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shruti G. Kulkarni, Sandra Pérez-Domínguez, Manfred Radmacher
{"title":"Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells","authors":"Shruti G. Kulkarni, Sandra Pérez-Domínguez, Manfred Radmacher","doi":"10.1002/jmr.3018","DOIUrl":"10.1002/jmr.3018","url":null,"abstract":"<p>We have measured the elastic properties of live cells by Atomic Force Microscope (AFM) using different tip geometries commonly used in AFM studies. Soft 4-sided pyramidal probes (spring constant = 12 and 30 mN/m, radius 20 nm), 3-sided pyramidal probes (spring constant = 100 mN/m, radius 65-75 nm), flat (circular) probes (spring constant = 63 mN/m, radius 290 nm) and spherical probes (spring constant = 43 mN/m, radius 5 μm) have been used. Cells (3T3 fibroblasts) having elastic moduli around 0.5 kPa were investigated. We found that cell measured stiffness shows a systematic dependence on tip geometry: the sharper the tip, the higher the average modulus values. We hypothesize that the blunter the tip, the larger the contact area over which the mechanical response is measured or averaged. If there are small-scale stiffer areas (like actin bundles) they will be easier to pick up by a sharp probe. This effect can be seen in the wider distribution of the histograms of the measured elastic moduli on cells. Furthermore, non-linear responses of cells may be present due to the high average pressures applied by sharp probes, which would lead to an overestimation of the Young's modulus. Pressure versus contact radius simulations for the different tip geometries for a 0.5 kPa sample suggested similar average pressure for Bio-MLCTs, PFQNM and cut tips, except spherical tips that showed much lower average pressure at the same 400 nm indentation. However, real data of the cells suggested different results. Using the same indentation depth (400 nm), PFQNM and Bio-MLCTs showed similar average pressure and it decreased for cut and spherical tips. The calculated contact area at 400 nm cell indentation, using the obtained apparent Young's modulus for each tip geometry, showed the following distribution: Bio-MLCTs < PFQNM < cut << spherical. In summary, tip geometry as well as average pressure and tip-sample contact area are important parameters to take into account when measuring mechanical properties of soft samples. The larger the tip radius, the larger the contact area that will lead to a more evenly distribution of the applied pressure.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of Ibuprofen as a pharmaceutical pollutant from aqueous phase using zinc oxide nanoparticles: Green synthesis, batch adsorption, and biological activities","authors":"Khuloud A. Alibrahim","doi":"10.1002/jmr.3015","DOIUrl":"10.1002/jmr.3015","url":null,"abstract":"<p>Recent interest has focused on the biosynthesis of metal nanoparticles (NPs), particularly from plants. The production of precipitate served as an early indicator of the presence in the present study's use of ZnO NPs green synthesis of these particles, which was further validated by; Fourier transform infrared spectroscopy, x-ray diffraction. Additionally, the Brunauer–Emmett–Teller was used to calculate the surface area, which came out to be 119.12 m<sup>2</sup>/g. Since the true effects of new pollutants, including medicines, on the environment and human health are not well understood, their presence in aquatic systems poses a severe hazard. For this reason, the antibiotic Ibuprofen (IBP) was absorbable to ZnO-NPs in this search. As opposed to fitting to Langmuir isothermally, the adsorption process was discovered to be pseudo-second-order kinetically, and the reaction was determined to be a chemisorption process. The process was endothermic and spontaneous, according to thermodynamic studies. Maximizing IBP removal from aqueous solution required the use of a Box–Behnken surface statistical design with four components, four levels, and response surface modeling. Solution pH, IBP concentration, duration, and dose were the four parameters that were utilized. The regeneration process, which is employed for five cycles with excellent efficiency, is the best benefit of using ZnO-NPs. Examine the elimination of pollutants from actual samples as well. However, the adsorbent is quite effective at reducing biological activity. At high concentrations of ZnO-NPs demonstrated notable antioxidant activity and Red Blood Cell (RBC) hemocompatibility and no discernible hemolysis was seen. ZnO-NPs demonstrated a notable percent suppression of α-amylase up to 53.6% at 400 μg/mL, and so displayed potential as an antidiabetic. Cyclooxygenase was suppressed by ZnO-NPs in an anti-inflammatory test (COX-1 & COX-2) up to 56.32% and 52.04% at a concentration of 400 μg/mL, respectively. Significant anti-Alzheimer potential was demonstrated by ZnO-NPs at 400 μg/mL by inhibiting Acetyl cholinesterase and Butyl cholinesterase up to 68.98 ± 1.62% and 62.36%, respectively. We concluded that guava extract is helpful for ZnO-NP reduction and capping. The bioengineered NPs could prevent Alzheimer's, diabetes, and inflammation and were biocompatible.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10051898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Mei, Shuyong Shang, Shaozhou Wang, Haiyang Ye, Peng Zhou
{"title":"Machine annealing-guided navigation of antihypertensive food peptide selectivity between human ACE N- and C-domains in structurally interacting diversity space","authors":"Li Mei, Shuyong Shang, Shaozhou Wang, Haiyang Ye, Peng Zhou","doi":"10.1002/jmr.3014","DOIUrl":"10.1002/jmr.3014","url":null,"abstract":"<p>Human angiotensin-converting enzyme (ACE) is a well-established druggable target for the treatment of hypertension (HTN), which contains two structurally homologous but functionally distinct N- and C-domains. Selective inhibition of the C-domain primarily contributes to the antihypertensive efficiency and can be exploited as medicinal agents and functional additives for regulating blood pressure with high safety. In this study, we used a machine annealing (MA) strategy to guide the navigation of antihypertensive peptides (AHPs) in structurally interacting diversity space with the two ACE domains based on their crystal/modeled complex structures and an in-house protein-peptide affinity scoring function, aiming to optimize the peptide selectivity for C-domain over N-domain. The strategy generated a panel of theoretically designed AHP hits with a satisfactory C-over-N (C > N) selectivity profile, from which several hits were found to have a good C > N selectivity, which is roughly comparable with or even better than the BPPb, a natural C > N-selective ACE-inhibitory peptide. Structural analysis and comparison of domain-peptide noncovalent interaction patterns revealed that (i) longer peptides (>4 amino aids) generally exhibit stronger selectivity than shorter peptides (<4 amino aids), (ii) peptide sequence can be divided into two, section I (including peptide C-terminal region) and section II (including peptide middle and N-terminal regions); the former contributes to both peptide affinity (primarily) and selectivity (secondarily), while the latter is almost only responsible for peptide selectivity, and (iii) charged/polar amino acids confer to peptide selectivity relative to hydrophobic/nonpolar amino acids (that confer to peptide affinity).</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ameena M. Al-bonayan, Nasser A. Alamrani, Saham F. Ibarhiam, Ali Q. Alorabi, Hana M. Abumelha, Turki M. Habeebullah, Nashwa M. El-Metwaly
{"title":"Chromoionophoric probe-anchored mesoporous silica nanospheres for rapid and reliable naked-eye detection of Ni(II) ions in petroleum products and removal from electroplating wastewater","authors":"Ameena M. Al-bonayan, Nasser A. Alamrani, Saham F. Ibarhiam, Ali Q. Alorabi, Hana M. Abumelha, Turki M. Habeebullah, Nashwa M. El-Metwaly","doi":"10.1002/jmr.3013","DOIUrl":"10.1002/jmr.3013","url":null,"abstract":"<p>This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3′-{(1E,1′ E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10<sup>−9</sup> M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hella Baumann, Melanie Schwingel, Marcello Sestu, Anna Burcza, Susanna Marg, Wolfgang Ziegler, Anna V. Taubenberger, Daniel J. Muller, Martin Bastmeyer, Clemens M. Franz
{"title":"Biphasic reinforcement of nascent adhesions by vinculin","authors":"Hella Baumann, Melanie Schwingel, Marcello Sestu, Anna Burcza, Susanna Marg, Wolfgang Ziegler, Anna V. Taubenberger, Daniel J. Muller, Martin Bastmeyer, Clemens M. Franz","doi":"10.1002/jmr.3012","DOIUrl":"10.1002/jmr.3012","url":null,"abstract":"<p>Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin. At minimal adhesion times (5-10 s), mouse embryonic fibroblast (MEF) wildtype (<i>wt</i>) and vinculin knock-out (<i>vin</i><sup>(−/−)</sup>) cells develop comparable adhesion forces on the scale of several individual integrin-ligand bonds, confirming that vinculin is dispensable for adhesion initiation. In contrast, after 60 to 120 s, adhesion strength and traction reinforce quickly in <i>wt</i> cells, while remaining low in <i>vin</i><sup>(−/−)</sup> cells. Re-expression of full-length vinculin or a constitutively active vinculin mutant (vinT12) in MEF <i>vin</i><sup>(−/−)</sup> cells restored adhesion and traction with the same efficiency, while vinculin with a mutated talin-binding head region (vinA50I) or missing the actin-binding tail-domain (vin880) was ineffective. Integrating total internal reflection fluorescence imaging into the SCFS setup furthermore enabled us to correlate vinculin-green fluorescent protein (GFP) recruitment to nascent adhesion sites with the built-up of vinculin-dependent adhesion forces directly. Vinculin recruitment and cell adhesion reinforcement followed synchronous biphasic patterns, suggesting vinculin recruitment, but not activation, as the rate-limiting step for adhesion reinforcement. Combining sensitive SCFS with fluorescence microscopy thus provides insight into the temporal sequence of vinculin-dependent mechanical reinforcement in nascent integrin adhesions.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10051896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-CD30 (Ber-H2) epitope requires structural elements as shown by mass spectroscopy and dual-site associated kinetics","authors":"Phillip Daniel Warren, Margaret Helfrich Smith","doi":"10.1002/jmr.3011","DOIUrl":"10.1002/jmr.3011","url":null,"abstract":"<p>The Ber-H2 mouse monoclonal antibody has been in use for 35 years for detecting the CD-30 biomarker in a variety of lymphomas. Despite the wide use of this clone, we have not been successful in applying synthetic peptides derived from the published epitope sequence and affinity data toward the development of a new Ber-H2-based in vitro diagnostic reagent assay. We found that synthetic peptides based on the published epitope sequence do not function to inhibit antibody-binding activity, thus indicating that the sequence is not the full epitope recognized by Ber-H2. In this report, we used mass spectroscopic analysis of proteolyzed CD30 fragments capable of binding Ber-H2 to identify additional regions within the epitope that participate in binding. Using surface plasmon resonance binding kinetic analyses and immuno-histochemical peptide-inhibition assays, we also demonstrate that the epitope sequence as originally reported is missing two key elements necessary for binding the Ber-H2 antibody.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9669325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajan Patel, Birajpal Singh, Anurag Sharma, Farooq Ahmad Wani, Md. Abrar Siddiquee, Aashima Anand, Maqsood Ahmad Malik, Shaeel Ahmed Al-Thabaiti, Imran Khan
{"title":"A biophysical approach to study the impact of muscle relaxant drug tizanidine on stability and activity of serum albumins","authors":"Rajan Patel, Birajpal Singh, Anurag Sharma, Farooq Ahmad Wani, Md. Abrar Siddiquee, Aashima Anand, Maqsood Ahmad Malik, Shaeel Ahmed Al-Thabaiti, Imran Khan","doi":"10.1002/jmr.3010","DOIUrl":"10.1002/jmr.3010","url":null,"abstract":"<p>The binding affinity of a drug with carrier proteins plays a major role in the distribution and administration of the drug within the body. Tizanidine (TND) is a muscle relaxant having antispasmodic and antispastic effects. Herein, we have studied the effect of tizanidine on serum albumins by spectroscopic techniques, such as absorption spectroscopic analysis, steady, state fluorescence, synchronous fluorescence, circular dichroism, and molecular docking. The binding constant and number of binding sites of TND with serum proteins were determined by means of fluorescence data. The thermodynamic parameters, like Gibbs' free energy (Δ<i>G</i>), enthalpy change (Δ<i>H</i>), and entropy change (Δ<i>S</i>), revealed that the complex formation is spontaneous, exothermic, and entropy driven. Further, synchronous spectroscopy revealed the involvement of Trp (amino acid) responsible for quenching of intensity in fluorescence in serum albumins in presence of TND. Circular dichroism results suggest that more folded secondary structure of proteins. In BSA the presence of 20 μM concentration of TND was able to gain most of its helical content. Similarly, in HSA the presence of 40 μM concentration of TND has been able to gain more helical content. Molecular docking and molecular dynamic simulation further confirm the binding of TND with serum albumins, thus validating our experimental results.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9731499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajamaluddin Malik, Javed Masood Khan, Abdullah S. Alhomida, Mohammad Shamsul Ola, Majed S. Alokail, Mohd Shahnawaz Khan, Amal M. Alenad, Nojood Altwaijry, Nouf Omar Alafaleq, Hamza Odeibat
{"title":"Agitation does not induce fibrillation in reduced hen egg-white lysozyme at physiological temperature and pH","authors":"Ajamaluddin Malik, Javed Masood Khan, Abdullah S. Alhomida, Mohammad Shamsul Ola, Majed S. Alokail, Mohd Shahnawaz Khan, Amal M. Alenad, Nojood Altwaijry, Nouf Omar Alafaleq, Hamza Odeibat","doi":"10.1002/jmr.3009","DOIUrl":"10.1002/jmr.3009","url":null,"abstract":"<p>Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired β-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and β-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9669303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}