{"title":"农产品废弃物活性炭增强对水中头孢曲松类抗生素的吸附","authors":"Khuloud A. Alibrahim","doi":"10.1002/jmr.3016","DOIUrl":null,"url":null,"abstract":"<p>The present work determines efficiency of domestic food waste like tea waste in removing pharmaceutical waste such as ceftriaxone (CEF) from synthetic wastewater. Carbonaceous material; Tea waste activated carbon (TAC) has been employed and it showed high removal capacity of 787.5 mg/g. TAC was characterized using; XPS, XRD, SEM, FT-IR, and BET as well as it approved that the adsorbent a has high surface area of .6 m<sup>2</sup>/g. Various experimental parameters are evaluated for the removal efficiency of the synthesized adsorbent under the present study. During the adsorption study through batch experiments, it approved that the adsorption isotherm was fitted to Langmuir, while kinetically fitted to pseudo-second-order; the adsorption process was chemisorption process as the adsorption energy was 23.7 kJ mol<sup>−1</sup>. From evaluation thermodynamic parameters the adsorption reaction was endothermic and spontaneous reaction. The different real samples spiked with CEF and studies the efficiency of TAC to remove it. On the other hand, investigated the regeneration efficiency of the TAC and exhibit high regeneration efficiency as it will be used after four cycles with good efficiency of about 84.2%.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced adsorption of ceftriaxone antibiotics from water by activated carbon derived from agriculture products waste\",\"authors\":\"Khuloud A. Alibrahim\",\"doi\":\"10.1002/jmr.3016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present work determines efficiency of domestic food waste like tea waste in removing pharmaceutical waste such as ceftriaxone (CEF) from synthetic wastewater. Carbonaceous material; Tea waste activated carbon (TAC) has been employed and it showed high removal capacity of 787.5 mg/g. TAC was characterized using; XPS, XRD, SEM, FT-IR, and BET as well as it approved that the adsorbent a has high surface area of .6 m<sup>2</sup>/g. Various experimental parameters are evaluated for the removal efficiency of the synthesized adsorbent under the present study. During the adsorption study through batch experiments, it approved that the adsorption isotherm was fitted to Langmuir, while kinetically fitted to pseudo-second-order; the adsorption process was chemisorption process as the adsorption energy was 23.7 kJ mol<sup>−1</sup>. From evaluation thermodynamic parameters the adsorption reaction was endothermic and spontaneous reaction. The different real samples spiked with CEF and studies the efficiency of TAC to remove it. On the other hand, investigated the regeneration efficiency of the TAC and exhibit high regeneration efficiency as it will be used after four cycles with good efficiency of about 84.2%.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enhanced adsorption of ceftriaxone antibiotics from water by activated carbon derived from agriculture products waste
The present work determines efficiency of domestic food waste like tea waste in removing pharmaceutical waste such as ceftriaxone (CEF) from synthetic wastewater. Carbonaceous material; Tea waste activated carbon (TAC) has been employed and it showed high removal capacity of 787.5 mg/g. TAC was characterized using; XPS, XRD, SEM, FT-IR, and BET as well as it approved that the adsorbent a has high surface area of .6 m2/g. Various experimental parameters are evaluated for the removal efficiency of the synthesized adsorbent under the present study. During the adsorption study through batch experiments, it approved that the adsorption isotherm was fitted to Langmuir, while kinetically fitted to pseudo-second-order; the adsorption process was chemisorption process as the adsorption energy was 23.7 kJ mol−1. From evaluation thermodynamic parameters the adsorption reaction was endothermic and spontaneous reaction. The different real samples spiked with CEF and studies the efficiency of TAC to remove it. On the other hand, investigated the regeneration efficiency of the TAC and exhibit high regeneration efficiency as it will be used after four cycles with good efficiency of about 84.2%.