{"title":"机械生物标志物研究进展","authors":"Mar Eroles, Felix Rico","doi":"10.1002/jmr.3022","DOIUrl":null,"url":null,"abstract":"<p>Mechanical biomarkers distinguish health conditions through quantitative mechanical measurements. The emergence and establishment of nanotechnology in the last decades have provided new tools to obtain mechanical biomarkers at the nanoscale. Mechanical measurements are reproducible, label-free, start to be applied in vivo can be high throughput, and require small samples. Mechanical protocols in clinical practice at the macro scale like palpation or blood pressure measurement are routinely used by medical doctors. Nanotechnology brought mechanical sensing to the next scale, where cells, tissues, and proteins can be probed and linked to medical conditions. Mechanical changes in cells and tissues may be detected before other markers, such as protein expression, providing an important advantage as biomarkers. In the present review, we explore the biomarker's historical evolution, describe mechanical biomarkers on various diseases and novel discoveries in the nanomechanical field for their characterization. We conclude that mechanical biomarkers are establishing novel hallmarks in diseases, in several cases for early diagnostics of diseases and discovery of drug targets in the proteins involved in the mechanical changes, while advances in instrumentation are bringing commercial products into the clinical practice. Mechanical biomarkers along with clinical testing are establishing an important niche in the market, whose demand is increasing due to the expansion of personalized medicine and unmet needs in the clinics.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3022","citationCount":"1","resultStr":"{\"title\":\"Advances in mechanical biomarkers\",\"authors\":\"Mar Eroles, Felix Rico\",\"doi\":\"10.1002/jmr.3022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechanical biomarkers distinguish health conditions through quantitative mechanical measurements. The emergence and establishment of nanotechnology in the last decades have provided new tools to obtain mechanical biomarkers at the nanoscale. Mechanical measurements are reproducible, label-free, start to be applied in vivo can be high throughput, and require small samples. Mechanical protocols in clinical practice at the macro scale like palpation or blood pressure measurement are routinely used by medical doctors. Nanotechnology brought mechanical sensing to the next scale, where cells, tissues, and proteins can be probed and linked to medical conditions. Mechanical changes in cells and tissues may be detected before other markers, such as protein expression, providing an important advantage as biomarkers. In the present review, we explore the biomarker's historical evolution, describe mechanical biomarkers on various diseases and novel discoveries in the nanomechanical field for their characterization. We conclude that mechanical biomarkers are establishing novel hallmarks in diseases, in several cases for early diagnostics of diseases and discovery of drug targets in the proteins involved in the mechanical changes, while advances in instrumentation are bringing commercial products into the clinical practice. Mechanical biomarkers along with clinical testing are establishing an important niche in the market, whose demand is increasing due to the expansion of personalized medicine and unmet needs in the clinics.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":\"36 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3022\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3022\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanical biomarkers distinguish health conditions through quantitative mechanical measurements. The emergence and establishment of nanotechnology in the last decades have provided new tools to obtain mechanical biomarkers at the nanoscale. Mechanical measurements are reproducible, label-free, start to be applied in vivo can be high throughput, and require small samples. Mechanical protocols in clinical practice at the macro scale like palpation or blood pressure measurement are routinely used by medical doctors. Nanotechnology brought mechanical sensing to the next scale, where cells, tissues, and proteins can be probed and linked to medical conditions. Mechanical changes in cells and tissues may be detected before other markers, such as protein expression, providing an important advantage as biomarkers. In the present review, we explore the biomarker's historical evolution, describe mechanical biomarkers on various diseases and novel discoveries in the nanomechanical field for their characterization. We conclude that mechanical biomarkers are establishing novel hallmarks in diseases, in several cases for early diagnostics of diseases and discovery of drug targets in the proteins involved in the mechanical changes, while advances in instrumentation are bringing commercial products into the clinical practice. Mechanical biomarkers along with clinical testing are establishing an important niche in the market, whose demand is increasing due to the expansion of personalized medicine and unmet needs in the clinics.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.