Journal of Morphology最新文献

筛选
英文 中文
A Dark Horse: Colonial System of Integration in Ctenostome Bryozoans (Gymnolaemata: Ctenostomata).
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2025-01-01 DOI: 10.1002/jmor.70018
Natalia Shunatova, Maxim Zhidkov
{"title":"A Dark Horse: Colonial System of Integration in Ctenostome Bryozoans (Gymnolaemata: Ctenostomata).","authors":"Natalia Shunatova, Maxim Zhidkov","doi":"10.1002/jmor.70018","DOIUrl":"10.1002/jmor.70018","url":null,"abstract":"<p><p>The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes. Here, we present the first detailed description of the CSI ultrastructure in both autozooids and kenozooids of two vesicularioideans, Buskia nitens and Amathia gracilis, and two alcyonidioideans, Alcyonidium hirsutum and Flustrellidra hispida. We revealed differences in the endocyst structure: in studied alcyonioidioideans, it comprises the epidermis, extracellular matrix and coelomic lining, while in the studied vesicularioideans, it includes only the epidermis. In vesicularioidean autozooids, the main CSI cord and the most distal part of the muscular funiculus originate together as a single structure near the caecum apex. However, at a short distance basally, they separate and run to different sites: the main CSI cord reaches the communication pore, and the muscular funiculus attaches to the cystid wall in the proximal part of the autozooids. The CSI in alcyonidioidean autozooids includes a central part, comprising several strands running from the caecum and pylorus to the cystid walls, and a peripheral part, which is located between the epidermis and peritoneum of the cystid walls and reaches the communication pores. The autozooidal CSI in the studied alcyonidioids never reaches kenozooidal communication pores. Nevertheless, the CSI is present in kenozooids of F. hispida; its structure corresponds to that of the peripheral part of the CSI in autozooids. These findings suggest that the CSI likely originated rather early in bryozoan evolution, and its putative initial function is nutrient transport to budding sites and zooids undergoing degeneration-regeneration cycle.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"286 1","pages":"e70018"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the Life History of Caimans: The Growth Dynamics of Caiman latirostris From an Osteohistological Approach
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-12-18 DOI: 10.1002/jmor.70010
Pereyra Maria Eugenia, Paula Bona, Pablo Siroski, Anusuya Chinsamy
{"title":"Analyzing the Life History of Caimans: The Growth Dynamics of Caiman latirostris From an Osteohistological Approach","authors":"Pereyra Maria Eugenia,&nbsp;Paula Bona,&nbsp;Pablo Siroski,&nbsp;Anusuya Chinsamy","doi":"10.1002/jmor.70010","DOIUrl":"10.1002/jmor.70010","url":null,"abstract":"<p>Skeletochronology and growth dynamics are intensively investigated in vertebrate osteohistology. These techniques are particularly important for interpreting the life history of long-lived species, such as crocodilians. To understand the longevity, growth dynamics, sexual maturity, and sexual dimorphism of caimans we studied an almost complete ontogenetic series of captive and wild specimens of <i>Caiman latirostris</i> from different localities of Argentina. We identified both cyclical and noncyclical growth marks in juvenile caimans, and we suggest that the latter are associated with environmental stress. By overlapping the growth marks of different individuals, we were able to estimate the minimum age of each specimen. Variations in growth rate are evident in different bones, with the femur and scapula having the highest growth rates, while the fibula and pubis have much slower growth rates. We were able to determine the approximate age of sexual maturity from growth curves deduced from osteohistology, which concurred with those assessed in ecological studies. Additionally based on the growth curves we were able to document different growth dynamics which may be related to sexual dimorphism. This study provides valuable insights into the life history and ecological dynamics of crocodilians, shedding light on their growth patterns, attainment of sexual maturity, and the influence of environmental factors on growth. Furthermore it documents the intraspecific and interelemental osteohistological variation in crocodilians and has direct implications for studies that assess the life history of extinct archosaurs and other sauropsids.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"286 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-12-17 DOI: 10.1002/jmor.70016
Alice Leavey, Christopher T. Richards, Laura B. Porro
{"title":"Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function","authors":"Alice Leavey,&nbsp;Christopher T. Richards,&nbsp;Laura B. Porro","doi":"10.1002/jmor.70016","DOIUrl":"10.1002/jmor.70016","url":null,"abstract":"<p>Muscle fibre architecture is an important aspect of anatomy to consider when estimating muscle properties. How fibre architecture varies across species specialising in different locomotor functions is not well understood in anurans, due to difficulties associated with fibre extraction in small animals using traditional methods. This paper presents the first digital analysis of fibre architecture in frogs using an automated fibre-tracking algorithm and contrast-enhanced µCT scans. We find differences in hindlimb muscle fibre architecture between frogs specialising in different locomotor modes, as well as examples of many-to-one mapping of form to function. The trade-off between fibre length and muscle physiological cross-sectional area, and therefore contractile speed, range of motion and muscle force output, differs significantly between jumpers and swimmers, but not walker-hoppers. Where species place on this functional spectrum of fibre architecture largely depends on the muscle being examined. There is also some evidence that fibre length may be adjusted to increase contractile speed without undertaking the metabolically expensive process of growing and maintaining larger muscles. Finally, we make a detailed outline of the remaining gaps in our understanding of anuran fibre architecture that can now be addressed with this valuable digital method in future research.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"286 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spermatozoa and Spermatogenesis in the Ribbon Worm Asteronemertes gibsoni (Hoplonemertea, Oerstediidae), a Symbiont of Sea Stars
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-12-11 DOI: 10.1002/jmor.70014
Olga V. Yurchenko, Alexey V. Chernyshev
{"title":"Spermatozoa and Spermatogenesis in the Ribbon Worm Asteronemertes gibsoni (Hoplonemertea, Oerstediidae), a Symbiont of Sea Stars","authors":"Olga V. Yurchenko,&nbsp;Alexey V. Chernyshev","doi":"10.1002/jmor.70014","DOIUrl":"10.1002/jmor.70014","url":null,"abstract":"<div>\u0000 \u0000 <p>In the phylum Nemertea, the class Hoplonemertea (former Enopla) comprises the largest number of studied species with complex spermatozoa. <i>Asteronemertes gibsoni</i> Chernyshev, 1991, a nemertean species having a symbiotic relationship with sea stars, is characterized by complex filiform spermatozoa. Here, spermatogenesis and spermatozoon structure in <i>A. gibsoni</i> have been examined using light and electron microscopy. Numerous proacrosomal vesicles of two kinds have been found in early spermatogenic cells. In spermatozoa, the elongated acrosomal complex consists of two components: a core, which is a spindle-shaped electron-dense acrosomal vesicle with a long anterior end, and its casing of moderate electron density that covers the acrosomal vesicle completely. The acrosomal complex is located laterally relative to the elongated nucleus. The acrosomal casing bears two rows of small, short channels between the nucleus and the electron-dense acrosomal core. In late spermatids, the elongations of the acrosomal complex and the nucleus occur simultaneously and are mediated by numerous microtubules that disappear during the latest stages of spermiogenesis. The flagellum in spermatogenic cells and spermatozoa contains an axoneme with the usual 9 × 2 + 2 microtubular organization and is posteriorly oriented in spermatozoa. As known to date, <i>A. gibsoni</i> has the most modified spermatozoa among investigated Nemertea, and the complex structure of its sperm is suggested to be associated with the reproductive biology, in particular, with fertilization. Additionally, a number of similar ultrastructural features in spermatozoon organization have been found in <i>A. gibsoni</i> and <i>Kurilonemertes phyllospadicola</i> whose phylogenetic relationship was previously proven.</p></div>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Corneal Structure of the Yellow-Legged Gull, Larus michahellis (Naumann, 1840)
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-12-10 DOI: 10.1002/jmor.70015
R. Cobo, A. Navarro-Sempere, P. Mielgo, Y. Segovia, M. García
{"title":"The Corneal Structure of the Yellow-Legged Gull, Larus michahellis (Naumann, 1840)","authors":"R. Cobo,&nbsp;A. Navarro-Sempere,&nbsp;P. Mielgo,&nbsp;Y. Segovia,&nbsp;M. García","doi":"10.1002/jmor.70015","DOIUrl":"10.1002/jmor.70015","url":null,"abstract":"<p>The cornea is the transparent part of the eye's outer sheath and the primary refractive element in the optical system of all vertebrates allowing light to focus on the central part of the retina. Maintenance of its curvature and clarity is therefore essential, providing a smooth optical surface and a protective goggle to ensure a focused image on the retina. However, the corneas of birds have been largely overlooked and the structures and mechanisms controlling corneal shape and hence visual acuity remain unknown. In this work, the cornea of a seabird, that is, the yellow-legged gull, has been investigated using light and electron microscopy. Histological examination reveals that, as in other vertebrates, the cornea consists of five layers: outer epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. The corneal epithelium is a nonkeratinized, stratified squamous epithelium approximately 3–4 cells thick that covers the front of the cornea. The surface of the cornea features two types of microprojections, microridges and microvilli. The acellular Bowman's layer is difficult to define because of its gradual transition into the more regularly arranged stroma, which constitute the bulk of the cornea, a collagen-rich central layer that comprises nearly 90% of the thickness of the cornea. The collagen fibrils are of uniform diameter and, within a given lamella, are all parallel to each other and run the entire breadth of the cornea. The lamellae are oriented at various angles with respect to each other. Between the lamellae, most of the keratocytes were concentrated in the central region of the corneal stroma. Desçemet's membrane is well-developed. The endothelium is a single cell-layer thick of approximately 3 µm in depth. The endothelial cells are polygonal and display irregular and interdigitating borders in basolateral plasma membranes. The results shown different diurnal lifestyle characteristics in the yellow-legged gull cornea.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Morphology of the Extrinsic and Intrinsic Leg Musculature in Dictyoptera (Insecta: Blattodea, Mantodea)
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-12-08 DOI: 10.1002/jmor.70013
Fabian Bäumler, Stanislav N. Gorb, Sebastian Büsse
{"title":"Comparative Morphology of the Extrinsic and Intrinsic Leg Musculature in Dictyoptera (Insecta: Blattodea, Mantodea)","authors":"Fabian Bäumler,&nbsp;Stanislav N. Gorb,&nbsp;Sebastian Büsse","doi":"10.1002/jmor.70013","DOIUrl":"10.1002/jmor.70013","url":null,"abstract":"<p>Insect legs, as primarily locomotory devices, can show a tremendous variety of morphological modifications providing a multitude of usages. The prehensile raptorial forelegs of praying mantises (Mantodea) are a prominent example of true multifunctionality since they are used for walking while being efficient prey-capturing and grasping devices. Although being mostly generalist arthropod predators, various morphological adaptations due to different environmental conditions occur across Mantodea. Recently, the general mantodean morphology, and particularly their raptorial forelegs, received an increased interest. Yet, knowledge about the evolutionary transition from walking to prey-grasping legs is still scarce. From evolutionary and functional perspectives, the question arises: what changes were necessary to achieve the strongly modified raptorial forelegs—while keeping walking ability—and how does the foreleg morphology differ from the remaining four walking legs? In this context, we investigated the musculature of the raptorial forelegs in seven phylogenetically distant mantodeans, including pterothoracic legs in four of them, using high-resolution microcomputed tomography and dissection. To understand the results from an evolutionary perspective, we additionally examined all three pairs of unmodified walking legs of the closest sister group—Blattodea. We updated the knowledge of blattodean morphology, revealing differences in cuticle structures of the coxal articulation of the first pair of legs between the two orders and a shared musculature set-up in all pairs of legs among later-branching mantodeans. Interestingly, the early branching species <i>Metallyticus splendidus</i> and <i>Chaeteessa</i> sp. show several muscular characteristics, otherwise found exclusively in one or the other order, with a few procoxal muscles showing an intermediate state between the two orders. Studying the evolutionary transition from a walking leg to a raptorial leg will help to understand the character evolution of this highly specialized biomechanical system from a purely locomotory appendage to a multi-functional device with all related amenities and constraints.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turtle Girdles: Comparing the Relationships Between Environment and Behavior on Forelimb Function in Loggerhead Sea Turtles (Caretta caretta) and River Cooters (Pseudemys concinna) 海龟腰带:比较环境和行为对蠵海龟(Caretta caretta)和河狸鼠(Pseudemys concinna)前肢功能的影响。
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-11-14 DOI: 10.1002/jmor.70007
Christopher J. Mayerl, John G. Capano, Noraly van Meer MME, Hannah I. Weller, Elska B. Kaczmarek, Maria Chadam, Richard W. Blob, Elizabeth L. Brainerd, Jeanette Wyneken
{"title":"Turtle Girdles: Comparing the Relationships Between Environment and Behavior on Forelimb Function in Loggerhead Sea Turtles (Caretta caretta) and River Cooters (Pseudemys concinna)","authors":"Christopher J. Mayerl,&nbsp;John G. Capano,&nbsp;Noraly van Meer MME,&nbsp;Hannah I. Weller,&nbsp;Elska B. Kaczmarek,&nbsp;Maria Chadam,&nbsp;Richard W. Blob,&nbsp;Elizabeth L. Brainerd,&nbsp;Jeanette Wyneken","doi":"10.1002/jmor.70007","DOIUrl":"10.1002/jmor.70007","url":null,"abstract":"<div>\u0000 \u0000 <p>Locomotion in water and on land impose dramatically different demands, yet many animals successfully move in both environments. Most turtle species perform both aquatic and terrestrial locomotion but vary in how they use their limbs. Freshwater turtles use anteroposterior movements of the limbs during walking and swimming with contralateral fore- and hindlimbs moving in synchrony. In contrast, sea turtles swim primarily with “powerstroke” movements, characterized by synchronous forelimb motions while the hindlimbs act as rudders. High-speed video has been used to study powerstroking, but pectoral girdle movements and long-axis rotation (LAR) of the humerus are likely both key components to turtle locomotor function and cannot be quantified from external video. Here, we used XROMM to measure pectoral girdle and humeral movements in a sea turtle (loggerhead, <i>Caretta caretta</i>) compared to the freshwater river cooter (<i>Pseudemys concinna</i>) during terrestrial and aquatic locomotion. The largest difference among species was in yaw of the pectoral girdle during swimming, with loggerheads showing almost no yaw during powerstroking whereas pectoral girdle yaw in the cooter during rowing was over 30°. The magnitude of humeral LAR was greatest during loggerhead powerstroking and the temporal pattern of supination and pronation was opposite from that of cooters. We hypothesize that these kinematic differences are driven by differences in how the limbs are used to power propulsion. Rotations at the glenoid drive the overall patterns of movement in freshwater turtles, whereas glenohumeral LAR in loggerheads is used to direct the position and orientation of the elbow, which is the joint that determines the orientation of the thrust-generating structure (the flipper) in loggerheads.</p></div>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ultrastructure of Spermiogenesis Within the Seminiferous Epithelium of the Texas Horned Lizard, Phrynosoma cornutum (Phrynosomatidae) 德克萨斯角蜥 (Phrynosomatidae) 精巢上皮细胞内精子形成的超微结构。
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-11-14 DOI: 10.1002/jmor.70008
Kevin M. Gribbins, Sethmini Rajaguru, Justin L. Rheubert, Stanley E. Trauth
{"title":"The Ultrastructure of Spermiogenesis Within the Seminiferous Epithelium of the Texas Horned Lizard, Phrynosoma cornutum (Phrynosomatidae)","authors":"Kevin M. Gribbins,&nbsp;Sethmini Rajaguru,&nbsp;Justin L. Rheubert,&nbsp;Stanley E. Trauth","doi":"10.1002/jmor.70008","DOIUrl":"10.1002/jmor.70008","url":null,"abstract":"<div>\u0000 \u0000 <p>Currently, there is limited histological data for spermatid morphologies within the testes of squamates. There are only 10 species of lizard that have complete ultrastructural data across the entire process of spermiogenesis, including several species of <i>Sceloporus</i>. These studies have shown that differences can be seen between spermatids of saurians within the same family or genus. Thus, the present study continues to test the hypothesis that differences exist in spermatid morphology between species within the same family. We collected five <i>Phrynosoma cornutum</i> males from Arizona. Their testes were extracted and processed with standard TEM techniques. Many of the characteristics of spermiogenesis within <i>P. cornutum</i> are conserved and similar in morphology to other phrynosomatid lizards. These similarities include the development of the acrosome, perforatorium, subacrosomal cone, nuclear rostrum, and epinuclear lucent zone. However, there were also differences observed in <i>P. cornutum</i> spermatids that are distinct compared to other phyrnosomatids. For example, <i>P. cornutum</i> spermatids include a wider and more robust perforatorium and less spiraling of the chromatin during condensation than that of other phrynosomatid lizards. The present results corroborate previous studies and indicate that even with morphological conservation within saurian spermatids, character differences between species can be recognized. Further studies on spermiogenesis are required to judge the relevance of these ontogenetic changes in terms of using them in amniotic or squamate spermatid/spermatozoa phylogenic analysis.</p></div>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructure and Function of the Stalk Gland Complex of Pompholyx faciemlarva (Rotifera: Monogononta) Pompholyx faciemlarva(轮虫:Monogononta)茎腺复合体的超微结构和功能。
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-11-12 DOI: 10.1002/jmor.70005
Thiago Quintão Araújo, Rick Hochberg
{"title":"Ultrastructure and Function of the Stalk Gland Complex of Pompholyx faciemlarva (Rotifera: Monogononta)","authors":"Thiago Quintão Araújo,&nbsp;Rick Hochberg","doi":"10.1002/jmor.70005","DOIUrl":"10.1002/jmor.70005","url":null,"abstract":"<p>Many planktonic rotifers carry their oviposited eggs until hatching. In some species, the eggs are attached to the mother via secretions from her style gland, which forms a thread that extends from her cloaca. In species of <i>Pompholyx</i>, the mother possesses the rare ability to change the tension on the secreted thread, which alters the proximity of the egg with respect to her body. In this study, we used behavioral observations, confocal microscopy, and transmission electron microscopy to study the functional morphology of the stalk gland, which secretes a similar thread to the style gland. Our observations reveal that six longitudinal muscles insert on a stalk-gland complex, which is a combination of a two-headed gland and an epithelial duct that connects to the posterior cloaca. The gland secretes a single, long, electron-dense thread that traverses the duct and attaches to the egg surface through the cloaca. Three retractor muscles insert on the stalk gland and function to pull the entire complex anteriorly, thereby increasing tension on the thread and moving the egg close to the mother's body. A set of three (two pairs and a single dorsal) protractor muscles antagonize these actions, and their contraction pulls the gland complex close to the cloaca, thereby releasing tension on the thread and allowing the egg to distance itself from the mother. The stalk gland complex does not appear to be homologous to the style glands of other rotifers, but we hypothesize that it functions as a form of maternal protection as is the case with style glands.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Scutulum and the Pre-Auricular Aponeurosis in Bats 蝙蝠的耳廓和耳前肌腱膜
IF 1.5 4区 医学
Journal of Morphology Pub Date : 2024-11-11 DOI: 10.1002/jmor.70006
Scott C. Pedersen, Chelsie C. G. Snipes, Richard T. Carter, Rolf Müller
{"title":"The Scutulum and the Pre-Auricular Aponeurosis in Bats","authors":"Scott C. Pedersen,&nbsp;Chelsie C. G. Snipes,&nbsp;Richard T. Carter,&nbsp;Rolf Müller","doi":"10.1002/jmor.70006","DOIUrl":"10.1002/jmor.70006","url":null,"abstract":"<p>The external ear in eutherian mammals is composed of the annular, auricular (pinna), and scutellar cartilages. The latter extends between the pinnae, across the top of the head, and lies at the intersection of numerous auricular muscles and is thought to be a sesamoid element. In bats, this scutulum consists of two distinct regions, (1) a thin squama that is in contact with the underlying temporalis fascia and (2) a lateral bossed portion that is lightly tethered to the medial surface of the pinna. The planar size, shape, and proportions of the squama vary by taxa, as does the relative size and thickness of the boss. The origins, insertions, and relative functions of the auricular muscles are complicated. Here, 30 muscles were tallied as to their primary attachment to the pinnae, scutula, or a pre-auricular musculo-aponeurotic plate that is derived from the epicranius. In contrast to Yangochiroptera, the origins and insertions of many auricular muscles have shifted from the scutulum to this aponeurotic plate, in both the Rhinolophidae and Hipposideridae. We propose that this functional shift is a derived character related primarily to the rapid translations and rotations of the pinna in high-duty-cycle rhinolophid and hipposiderid bats.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信