{"title":"Therapeutic Efficacy of Hemodynamic Management Using Norepinephrine on Cardiorespiratory Function Following Cervical Spinal Cord Contusion in Rats.","authors":"Rui-Yi Chen, Kun-Ze Lee","doi":"10.1089/neu.2024.0342","DOIUrl":"https://doi.org/10.1089/neu.2024.0342","url":null,"abstract":"<p><p>Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion. Adult male rats underwent cervical spinal cord contusion and the implantation of osmotic pumps filled with saline or norepinephrine (NE) (125 μg/(kg·h) for 1 week). The cardiorespiratory function of unanesthetized rats was examined using a non-invasive blood pressure analyzer and double-chamber plethysmography. Cervical spinal cord contusion caused a long-term reduction in the mean arterial pressure and tidal volume. This hypotensive response was significantly reversed in contused rats receiving NE (1 day: 88 ± 19 mmHg; 2 weeks: 96 ± 13 mmHg) compared with contused rats receiving saline (1 day: 72 ± 15 mmHg; 2 weeks: 82 ± 10 mmHg). NE also significantly improved the tidal volume 1 day post-injury (contused + NE: 0.7 ± 0.2 mL; contused + saline: 0.5 ± 0.1 mL). Immunofluorescence staining results revealed that injury-induced reductions of noradrenergic and glutamatergic fibers within the thoracic spinal cord were significantly improved by NE. These results provided the evidence demonstrating that hemodynamic management using NE significantly improves cardiorespiratory function by alleviating neural pathway damage after cervical spinal cord contusion.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Coenen, Franziska van den Bongard, Anne Carina Delling, Claus Reinsberger
{"title":"Differences in Network Functional Connectivity in Response to Sub-Symptomatic Exercise Between Elite Adult Athletes after Sport-Related Concussion and Healthy Matched Controls: A Pilot Study.","authors":"Jessica Coenen, Franziska van den Bongard, Anne Carina Delling, Claus Reinsberger","doi":"10.1089/neu.2023.0629","DOIUrl":"https://doi.org/10.1089/neu.2023.0629","url":null,"abstract":"<p><p>Resting-state electroencephalography (rsEEG) has developed as a method to explore functional network alterations related to sport-related concussion (SRC). Although exercise is an integral part of an athlete's return to sport (RTS) protocol, our understanding of the effects of exercise on (impaired) brain network activity in elite adult athletes is limited. However, this information may be beneficial to inform recovery and RTS progressions. Recording (128-channel) rsEEG datasets before and after a standardized moderate aerobic bike exercise test, this study aimed to explore functional connectivity patterns in whole brain and relevant functional networks in a group of elite adult athletes post-injury compared with healthy matched controls. The following networks were selected <i>a priori</i>: whole brain (68 regions of interest [ROIs]), default mode network (14 ROIs), central autonomic network (CAN, 24 ROIs), and visual network (8 ROIs). Twenty-one SRC athletes and 21 age-, sex-, sport type-, and skill level-matched healthy controls participated in this study. The SRC athletes were recruited during their RTS protocol (days since injury: 2-140 days). All athletes were able to achieve the exercise goal of reaching a moderate intensity (70% of their age-calculated maximum heart rate) while staying sub-symptomatic. Before and after exercise, functional connectivity was calculated by the phase locking value, in the alpha band (7-13 Hz). Mann-Whitney U and Wilcoxon signed rank tests were used to explore neurophysiological differences between and within groups, respectively. Whole-brain connectivity increased significantly from pre- to post-exercise within both groups (SRC: 0.264-0.284; <i>p</i> = 0.011 vs. controls: 0.253-0.257; <i>p</i> = 0.011). While CAN connectivity significantly increased only within the SRC group from pre-(0.298) to post-exercise (0.317; <i>p</i> = 0.003). Although all athletes reached their exercise goal without exacerbation of symptoms, the impact of exercise on the CAN appears to be greater for the SRC athletes, than matched healthy controls. The potential clinical significance of this finding is that it may have revealed an underlying mechanism for the cardiac autonomic alterations post-injury. This study merits further investigation into the CAN, as a network of interest more closely aligned with the clinical features (e.g., autonomic dysfunction) during athletes' RTS.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaitlyn M Dybing, Cecelia J Vetter, Desarae A Dempsey, Soumilee Chaudhuri, Andrew J Saykin, Shannon L Risacher
{"title":"Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography.","authors":"Kaitlyn M Dybing, Cecelia J Vetter, Desarae A Dempsey, Soumilee Chaudhuri, Andrew J Saykin, Shannon L Risacher","doi":"10.1089/neu.2024.0055","DOIUrl":"10.1089/neu.2024.0055","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikki S Thuss, Mayra Bittencourt, Sebastián A Balart-Sánchez, Jacoba M Spikman, Natasha M Maurits, Joukje van der Naalt
{"title":"Mild Traumatic Brain Injury in Older Adults: Recovery Course and Insights on Early Predictors of Outcome.","authors":"Nikki S Thuss, Mayra Bittencourt, Sebastián A Balart-Sánchez, Jacoba M Spikman, Natasha M Maurits, Joukje van der Naalt","doi":"10.1089/neu.2024.0220","DOIUrl":"https://doi.org/10.1089/neu.2024.0220","url":null,"abstract":"<p><p>Mild traumatic brain injury (mTBI) is a growing health concern in the context of an aging population. Older adults comprise a distinct population, with an increased vulnerability for mTBI due to comorbid diseases and age-associated frailty compared with the adult population. The aim of this study was to assess the recovery course and determinants of outcome in a large cohort of older patients with mTBI. For this study, 154 patients aged ≥60 years with mTBI admitted to the Emergency Department were investigated in a prospective observational cohort (ReCONNECT study). Demographics and injury characteristics (computed tomography scan, Glasgow Coma Scale) were determined on admission. Early determinants of outcome were assessed at 2 weeks post-injury (e.g., early post-traumatic complaints and emotional distress) with validated questionnaires. Quality of life (QoL) was determined at 3 months with the World Health Organization Quality of Life Scale-Shortened Version. Functional outcome was determined at 3 (early) and 6 months (long term) post-injury with the Glasgow Outcome Scale Extended (GOSE). Logistic regression analyses identified predictors of outcome with dichotomized GOSE scores as dependent variable (incomplete recovery was defined by GOSE ≤ 7 and complete recovery by GOSE 8). Complete recovery was observed in 42% of patients at 3 months post-injury without significant sex differences. More early post-traumatic complaints were present in patients with incomplete recovery, compared with patients with complete recovery (<i>p</i> < 0.001). Scores on overall QoL, general health-related QoL and all subdomains were lower for patients with incomplete recovery compared with patients with complete recovery (<i>p</i> < 0.05). Incomplete recovery at 3 months post-injury was predicted by increased physical frailty and early post-traumatic complaints (Nagelkerke <i>R</i><sup>2</sup> = 0.25). At 6 months post-injury, 53% of patients had complete recovery with higher frequency in males (60%) compared with females (42%) (<i>p</i> = 0.025). None of the investigated variables significantly predicted long-term outcome at 6 months post-injury (Nagelkerke <i>R</i><sup>2</sup> = 0.14), which might be explained by the changing cohort characteristics over time due to age-related morbidity. Our results demonstrate that almost half of older patients with mTBI show complete recovery with complaints and physical frailty as predictors of outcome at 3 months post-injury. Recovery still improves after 3 months and further follow-up is necessary to identify other factors that are associated with long-term outcomes in this specific category of patients with mTBI. The recovery course in older patients with mTBI is dynamic and further research on factors associated with long-term outcomes in this specific patient population is imperative to enhance treatment strategies.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew R Mayer, Andrew B Dodd, Josef M Ling, Edward J Bedrick
{"title":"Revisiting Subject-Specific Analyses in Neuroimaging Data Using \"Z-Score\" Methods.","authors":"Andrew R Mayer, Andrew B Dodd, Josef M Ling, Edward J Bedrick","doi":"10.1089/neu.2024.0434","DOIUrl":"https://doi.org/10.1089/neu.2024.0434","url":null,"abstract":"","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah I Gimbel, Lars Hungerford, Elizabeth W Twamley, Mark L Ettenhofer
{"title":"Authors' Response to \"Revisiting Subject-Specific Analyses in Neuroimaging Data Using \"Z-Score\" Methods\".","authors":"Sarah I Gimbel, Lars Hungerford, Elizabeth W Twamley, Mark L Ettenhofer","doi":"10.1089/neu.2024.0546","DOIUrl":"https://doi.org/10.1089/neu.2024.0546","url":null,"abstract":"","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Mateus Bernardo Harrington, Paul Cool, Charlotte Hulme, Jessica Fisher-Stokes, Mandy Peffers, Wagih El Masri, Aheed Osman, Joy Roy Chowdhury, Naveen Kumar, Srinivasa Budithi, Karina Wright
{"title":"A Comprehensive Proteomic and Bioinformatic Analysis of Human Spinal Cord Injury Plasma Identifies Proteins Associated with the Complement Cascade and Liver Function as Potential Prognostic Indicators of Neurological Outcome.","authors":"Gabriel Mateus Bernardo Harrington, Paul Cool, Charlotte Hulme, Jessica Fisher-Stokes, Mandy Peffers, Wagih El Masri, Aheed Osman, Joy Roy Chowdhury, Naveen Kumar, Srinivasa Budithi, Karina Wright","doi":"10.1089/neu.2023.0064","DOIUrl":"https://doi.org/10.1089/neu.2023.0064","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a major cause of disability, with complications postinjury often leading to lifelong health issues with the need for extensive treatment. Neurological outcome post-SCI can be variable and difficult to predict, particularly in incompletely injured patients. The identification of specific SCI biomarkers in blood may be able to improve prognostics in the field. This study has utilized proteomic and bioinformatic methodologies to investigate differentially expressed proteins in plasma samples across human SCI cohorts with the aim of identifying candidate prognostic biomarkers and biological pathway alterations that relate to neurological outcome. Blood samples were taken, following informed consent, from American Spinal Injury Association impairment scale (AIS) grade C \"improvers\" (those who experienced an AIS grade improvement) and \"nonimprovers\" (no AIS change) and AIS grade A and D at <2 weeks (\"acute\") and ∼3 months (\"subacute\") postinjury. The total protein concentration from each sample was extracted, with pooled samples being labeled and nonpooled samples treated with ProteoMiner<sup>™</sup> beads. Samples were then analyzed using two 4-plex isobaric tag for relative and absolute quantification (iTRAQ) analyses and a label-free experiment for comparison before quantifying with mass spectrometry. Data are available via ProteomeXchange with identifiers PXD035025 and PXD035072 for the iTRAQ and label-free experiments, respectively. Proteomic datasets were analyzed using OpenMS (version 2.6.0). R (version 4.1.4) and, in particular, the R packages MSstats (version 4.0.1) and pathview (version 1.32.0) were used for downstream analysis. Proteins of interest identified from this analysis were further validated by enzyme-linked immunosorbent assay. The data demonstrated proteomic differences between the cohorts, with the results from the iTRAQ approach supporting those of the label-free analysis. A total of 79 and 87 differentially abundant proteins across AIS and longitudinal groups were identified from the iTRAQ and label-free analyses, respectively. Alpha-2-macroglobulin, retinol-binding protein 4 (RBP4), serum amyloid A1, peroxiredoxin 2 (PRX-2), apolipoprotein A1, and several immunoglobulins were identified as biologically relevant and differentially abundant, with potential as individual candidate prognostic biomarkers of neurological outcome. Bioinformatics analyses revealed that the majority of differentially abundant proteins were components of the complement cascade and most interacted directly with the liver. Many of the proteins of interest identified using proteomics were detected only in a single group and therefore have potential as binary (present or absent) biomarkers, RBP4 and PRX-2 in particular. Additional investigations into the chronology of these proteins and their levels in other tissues (cerebrospinal fluid in particular) are needed to better understand the underlying pathophysiology, including","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of neurotraumaPub Date : 2024-12-01Epub Date: 2024-09-20DOI: 10.1089/neu.2023.0315
Jared A Rowland, Jennifer R Stapleton-Kotloski, Dwayne W Godwin, Craig A Hamilton, Sarah L Martindale
{"title":"The Functional Connectome and Long-Term Symptom Presentation Associated With Mild Traumatic Brain Injury and Blast Exposure in Combat Veterans.","authors":"Jared A Rowland, Jennifer R Stapleton-Kotloski, Dwayne W Godwin, Craig A Hamilton, Sarah L Martindale","doi":"10.1089/neu.2023.0315","DOIUrl":"10.1089/neu.2023.0315","url":null,"abstract":"<p><p>Mild traumatic brain injury (TBI) sustained in a deployment environment (deployment TBI) can be associated with increased severity of long-term symptom presentation, despite the general expectation of full recovery from a single mild TBI. The heterogeneity in the effects of deployment TBI on the brain can be difficult for a case-control design to capture. The functional connectome of the brain is an approach robust to heterogeneity that allows global measurement of effects using a common set of outcomes. The present study evaluates how differences in the functional connectome relate to remote symptom presentation following combat deployment and determines if deployment TBI, blast exposure, or post-traumatic stress disorder (PTSD) are associated with these neurological differences. Participants included 181 Iraq and Afghanistan combat-exposed Veterans, approximately 9.4 years since deployment. Structured clinical interviews provided diagnoses and characterizations of TBI, blast exposure, and PTSD. Self-report measures provided characterization of long-term symptoms (psychiatric, behavioral health, and quality of life). Resting-state magnetoencephalography was used to characterize the functional connectome of the brain individually for each participant. Linear regression identified factors contributing to symptom presentation including relevant covariates, connectome metrics, deployment TBI, blast exposure PTSD, and conditional relationships. Results identified unique contributions of aspects of the connectome to symptom presentation. Furthermore, several conditional relationships were identified, demonstrating that the connectome was related to outcomes in the presence of only deployment-related TBI (including blast-related TBI, primary blast TBI, and blast exposure). No conditional relationships were identified for PTSD; however, the main effect of PTSD on symptom presentation was significant for all models. These results demonstrate that the connectome captures aspects of brain function relevant to long-term symptom presentation, highlighting that deployment-related TBI influences symptom outcomes through a neurological pathway. These findings demonstrate that changes in the functional connectome associated with deployment-related TBI are relevant to symptom presentation over a decade past the injury event, providing a clear demonstration of a brain-based mechanism of influence.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"2513-2527"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of neurotraumaPub Date : 2024-12-01Epub Date: 2024-09-20DOI: 10.1089/neu.2024.0243
Reid A Syrydiuk, Adrian J Boltz, Landon B Lempke, Jaclyn B Caccese, Thomas W McAllister, Michael A McCrea, Paul F Pasquina, Steven P Broglio
{"title":"SCAT Symptom Evolution in the Acute Concussion Phase: Findings from the NCAA-DoD CARE Consortium.","authors":"Reid A Syrydiuk, Adrian J Boltz, Landon B Lempke, Jaclyn B Caccese, Thomas W McAllister, Michael A McCrea, Paul F Pasquina, Steven P Broglio","doi":"10.1089/neu.2024.0243","DOIUrl":"10.1089/neu.2024.0243","url":null,"abstract":"<p><p>The Sport Concussion Assessment Tool (SCAT) is the most widely used tool following sport-related concussion (SRC). Initial SCAT symptom burden is a strong predictor of recovery in collegiate athletes; however, it is unknown if symptom presentation varies within the acute (<48 h) post-SRC phase. The purpose of this cohort study was to examine acute SRC symptom presentation among the National Collegiate Athletic Association (NCAA) athletes. Concussed NCAA varsity athletes (<i>n</i> = 1,780) from 30 universities across the United States, which participated in the Concussion Assessment, Research, and Education (CARE) Consortium, were included. Time of injury occurrence and SCAT administration data were recorded, from which time-to-SCAT (hours, continuous) was calculated. The main outcome was SCAT total symptom severity [(TSS), 0-126]. Multivariable negative binomial regression was used to examine the association between time (hours) since injury and TSS. Covariates included sex, previous concussion, sport contact level, amnesia/loss of consciousness, immediate reporting of injury, and injury situation. A random effect (person level) accounted for multiple assessments. TSS score ratios (SR) with associated 95% confidence intervals (CI) were provided. The SCAT was administered an average of 14 (25th-75th percentile: 1.2-24) hours post-SRC, and average TSS was 27.35 ± 21.28 across all participants. Time-to-SCAT was associated with a 1% decrease in TSS after adjusting for covariate effects (SR: 0.99, 95% CI: 0.99-0.99, <i>p</i> < 0.001). Overall, we observed a small, but significant decrease in TSS with each hour post-SRC. Assessing a concussed athlete once in the acute phase will likely provide a sufficient sense of their symptomatic well-being, as measures did not fluctuate dramatically. Future research should aim to examine how acute symptom evolution influences recovery metrics.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"2571-2579"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of neurotraumaPub Date : 2024-12-01Epub Date: 2024-09-05DOI: 10.1089/neu.2024.0128
Allyson T Gage, James R Stone, Elisabeth A Wilde, Stephen R McCauley, Robert C Welsh, John P Mugler, Nick Tustison, Brian Avants, Christopher T Whitlow, Lee Lancashire, Seema D Bhatt, Magali Haas
{"title":"Normative Neuroimaging Library: Designing a Comprehensive and Demographically Diverse Dataset of Healthy Controls to Support Traumatic Brain Injury Diagnostic and Therapeutic Development.","authors":"Allyson T Gage, James R Stone, Elisabeth A Wilde, Stephen R McCauley, Robert C Welsh, John P Mugler, Nick Tustison, Brian Avants, Christopher T Whitlow, Lee Lancashire, Seema D Bhatt, Magali Haas","doi":"10.1089/neu.2024.0128","DOIUrl":"10.1089/neu.2024.0128","url":null,"abstract":"<p><p>The past decade has seen impressive advances in neuroimaging, moving from qualitative to quantitative outputs. Available techniques now allow for the inference of microscopic changes occurring in white and gray matter, along with alterations in physiology and function. These existing and emerging techniques hold the potential of providing unprecedented capabilities in achieving a diagnosis and predicting outcomes for traumatic brain injury (TBI) and a variety of other neurological diseases. To see this promise move from the research lab into clinical care, an understanding is needed of what normal data look like for all age ranges, sex, and other demographic and socioeconomic categories. Clinicians can only use the results of imaging scans to support their decision-making if they know how the results for their patient compare with a normative standard. This potential for utilizing magnetic resonance imaging (MRI) in TBI diagnosis motivated the American College of Radiology and Cohen Veterans Bioscience to create a reference database of healthy individuals with neuroimaging, demographic data, and characterization of psychological functioning and neurocognitive data that will serve as a normative resource for clinicians and researchers for development of diagnostics and therapeutics for TBI and other brain disorders. The goal of this article is to introduce the large, well-curated Normative Neuroimaging Library (NNL) to the research community. NNL consists of data collected from ∼1900 healthy participants. The highlights of NNL are (1) data are collected across a diverse population, including civilians, veterans, and active-duty service members with an age range (18-64 years) not well represented in existing datasets; (2) comprehensive structural and functional neuroimaging acquisition with state-of-the-art sequences (including structural, diffusion, and functional MRI; raw scanner data are preserved, allowing higher quality data to be derived in the future; standardized imaging acquisition protocols across sites reflect sequences and parameters often recommended for use with various neurological and psychiatric conditions, including TBI, post-traumatic stress disorder, stroke, neurodegenerative disorders, and neoplastic disease); and (3) the collection of comprehensive demographic details, medical history, and a broad structured clinical assessment, including cognition and psychological scales, relevant to multiple neurological conditions with functional sequelae. Thus, NNL provides a demographically diverse population of healthy individuals who can serve as a comparison group for brain injury study and clinical samples, providing a strong foundation for precision medicine. Use cases include the creation of imaging-derived phenotypes (IDPs), derivation of reference ranges of imaging measures, and use of IDPs as training samples for artificial intelligence-based biomarker development and for normative modeling to help identify injury-induced ","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"2497-2512"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}