神经元周围网络变化显示明显的左右脊髓膈回路。

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Judith Sánchez-Ventura, Kayla Anne Schardien, Tara Fortino, Lana V Zholudeva, Michael A Lane, Esther Udina
{"title":"神经元周围网络变化显示明显的左右脊髓膈回路。","authors":"Judith Sánchez-Ventura, Kayla Anne Schardien, Tara Fortino, Lana V Zholudeva, Michael A Lane, Esther Udina","doi":"10.1089/neu.2024.0597","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory failure is one of the greatest causes of morbidity and mortality after cervical lesions, the most common type of spinal cord injury (SCI). Fortunately, several pre-clinical and clinical studies have shown spontaneous, but limited, respiratory recovery after injury. However, there are still many unanswered questions about what is driving this recovery, so there is a growing need to further elucidate the neuroplastic potential of the phrenic network. Here, we investigated the structural plasticity of the right and left phrenic networks by analyzing perineuronal net (PNN) changes after a C2 hemisection (C2Hx) in mice. For this purpose, the right and left phrenic systems were traced with a pseudorabies virus, a trans-synaptic retrograde tracer applied to the diaphragm muscle, labeling the entire phrenic motor network. We found most PNN-bearing neurons within the ventral horn in naïve animals, specifically around phrenic motoneurons (PhMNs), but not phrenic spinal interneurons. Right, but not left, C2Hx resulted in a significant increase in PNNs and glutamatergic synapses around ipsilateral PhMNs, suggesting that the right C2Hx requires greater neuroplasticity to overcome respiratory dysfunction. The results from this study uncover profound anatomical and functional asymmetries in left- and right-sided phrenic networks, underlying the complex nature of the spinal respiratory system, and contribute to a more advanced understanding of how the phrenic network adapts to trauma. Overall, this work underscores the importance of studying neuroplasticity and how it holds the potential to help improve outcomes for individuals living with SCI.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perineuronal Net Changes Reveal a Distinct Right and Left Spinal Phrenic Circuit.\",\"authors\":\"Judith Sánchez-Ventura, Kayla Anne Schardien, Tara Fortino, Lana V Zholudeva, Michael A Lane, Esther Udina\",\"doi\":\"10.1089/neu.2024.0597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory failure is one of the greatest causes of morbidity and mortality after cervical lesions, the most common type of spinal cord injury (SCI). Fortunately, several pre-clinical and clinical studies have shown spontaneous, but limited, respiratory recovery after injury. However, there are still many unanswered questions about what is driving this recovery, so there is a growing need to further elucidate the neuroplastic potential of the phrenic network. Here, we investigated the structural plasticity of the right and left phrenic networks by analyzing perineuronal net (PNN) changes after a C2 hemisection (C2Hx) in mice. For this purpose, the right and left phrenic systems were traced with a pseudorabies virus, a trans-synaptic retrograde tracer applied to the diaphragm muscle, labeling the entire phrenic motor network. We found most PNN-bearing neurons within the ventral horn in naïve animals, specifically around phrenic motoneurons (PhMNs), but not phrenic spinal interneurons. Right, but not left, C2Hx resulted in a significant increase in PNNs and glutamatergic synapses around ipsilateral PhMNs, suggesting that the right C2Hx requires greater neuroplasticity to overcome respiratory dysfunction. The results from this study uncover profound anatomical and functional asymmetries in left- and right-sided phrenic networks, underlying the complex nature of the spinal respiratory system, and contribute to a more advanced understanding of how the phrenic network adapts to trauma. Overall, this work underscores the importance of studying neuroplasticity and how it holds the potential to help improve outcomes for individuals living with SCI.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2024.0597\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0597","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

呼吸衰竭是脊髓损伤(SCI)中最常见的一种,是颈椎损伤后发病和死亡的主要原因之一。幸运的是,一些临床前和临床研究表明,损伤后呼吸恢复是自发的,但有限。然而,关于是什么推动了这种恢复,仍然有许多悬而未决的问题,因此越来越需要进一步阐明膈神经网络的神经可塑性潜力。本研究通过分析小鼠C2半切(C2Hx)后左右膈神经网络(PNN)的变化,探讨了左右膈神经网络的结构可塑性。为此,用伪狂犬病毒(一种应用于膈肌的跨突触逆行示踪剂)追踪左右膈神经系统,标记整个膈神经运动网络。在naïve动物中,我们发现大多数携带pnn的神经元位于腹角内,特别是在膈运动神经元(PhMNs)周围,而不是膈脊髓中间神经元。右侧(而非左侧)C2Hx导致同侧PhMNs周围的PNNs和谷氨酸能突触显著增加,表明右侧C2Hx需要更大的神经可塑性来克服呼吸功能障碍。这项研究的结果揭示了左右两侧膈神经网络在解剖学和功能上的不对称性,这是脊柱呼吸系统复杂性质的基础,并有助于更深入地了解膈神经网络如何适应创伤。总的来说,这项工作强调了研究神经可塑性的重要性,以及它如何有潜力帮助改善脊髓损伤患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perineuronal Net Changes Reveal a Distinct Right and Left Spinal Phrenic Circuit.

Respiratory failure is one of the greatest causes of morbidity and mortality after cervical lesions, the most common type of spinal cord injury (SCI). Fortunately, several pre-clinical and clinical studies have shown spontaneous, but limited, respiratory recovery after injury. However, there are still many unanswered questions about what is driving this recovery, so there is a growing need to further elucidate the neuroplastic potential of the phrenic network. Here, we investigated the structural plasticity of the right and left phrenic networks by analyzing perineuronal net (PNN) changes after a C2 hemisection (C2Hx) in mice. For this purpose, the right and left phrenic systems were traced with a pseudorabies virus, a trans-synaptic retrograde tracer applied to the diaphragm muscle, labeling the entire phrenic motor network. We found most PNN-bearing neurons within the ventral horn in naïve animals, specifically around phrenic motoneurons (PhMNs), but not phrenic spinal interneurons. Right, but not left, C2Hx resulted in a significant increase in PNNs and glutamatergic synapses around ipsilateral PhMNs, suggesting that the right C2Hx requires greater neuroplasticity to overcome respiratory dysfunction. The results from this study uncover profound anatomical and functional asymmetries in left- and right-sided phrenic networks, underlying the complex nature of the spinal respiratory system, and contribute to a more advanced understanding of how the phrenic network adapts to trauma. Overall, this work underscores the importance of studying neuroplasticity and how it holds the potential to help improve outcomes for individuals living with SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurotrauma
Journal of neurotrauma 医学-临床神经学
CiteScore
9.20
自引率
7.10%
发文量
233
审稿时长
3 months
期刊介绍: Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信