Sofiane Lounici, Melek Önen, Orhan Ermis, S. Trabelsi
{"title":"BlindSpot: Watermarking Through Fairness","authors":"Sofiane Lounici, Melek Önen, Orhan Ermis, S. Trabelsi","doi":"10.1145/3531536.3532950","DOIUrl":"https://doi.org/10.1145/3531536.3532950","url":null,"abstract":"With the increasing development of machine learning models in daily businesses, a strong need for intellectual property protection arised. For this purpose, current works suggest to leverage backdoor techniques to embed a watermark into the model, by overfitting to a set of particularly crafted and secret input-output pairs called triggers. By sending verification queries containing triggers, the model owner can analyse the behavior of any suspect model on the queries to claim its ownership. However, when it comes to scenarios where frequent monitoring is needed, the computational overhead of these verification queries in terms of volume demonstrates that backdoor-based watermarking appears to be too sensitive to outlier detection attacks and cannot guarantee the secrecy of the triggers. To solve this issue, we introduce BlindSpot, to watermark machine learning models through fairness. Our trigger-less approach is compatible with a high number of verification queries while being robust to outlier detection attacks. We show on Fashion-MNIST and CIFAR-10 datasets that BlindSpot is efficiently watermarking models while robust to outlier detection attacks, at a performance cost on the accuracy of 2%.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125902715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Ibarrondo, H. Chabanne, V. Despiegel, Melek Önen
{"title":"Colmade: Collaborative Masking in Auditable Decryption for BFV-based Homomorphic Encryption","authors":"Alberto Ibarrondo, H. Chabanne, V. Despiegel, Melek Önen","doi":"10.1145/3531536.3532952","DOIUrl":"https://doi.org/10.1145/3531536.3532952","url":null,"abstract":"This paper proposes a novel collaborative decryption protocol for the Brakerski-Fan-Vercauteren (BFV) homomorphic encryption scheme in a multiparty distributed setting, and puts it to use in designing a leakage-resilient biometric identification solution. Allowing the computation of standard homomorphic operations over encrypted data, our protocol reveals only one least significant bit (LSB) of a scalar/vectorized result resorting to a pool of N parties. By employing additively shared masking, our solution preserves the privacy of all the remaining bits in the result as long as one party remains honest. We formalize the protocol, prove it secure in several adversarial models, implement it on top of the open-source library Lattigo and showcase its applicability as part of a biometric access control scenario.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128112917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FMFCC-V: An Asian Large-Scale Challenging Dataset for DeepFake Detection","authors":"Gen Li, Xianfeng Zhao, Yun Cao, Pengfei Pei, Jinchuan Li, Zeyu Zhang","doi":"10.1145/3531536.3532946","DOIUrl":"https://doi.org/10.1145/3531536.3532946","url":null,"abstract":"The abuse of DeepFake technique has raised enormous public concerns in recent years. Currently, the existing DeepFake datasets suffer some weaknesses of obvious visual artifacts, minimal Asian proportion, backward synthesis methods and short video length. To make up these weaknesses, we have constructed an Asian large-scale challenging DeepFake dataset to enable the training of DeepFake detection models and organized the accompanying video track of the first Fake Media Forensics Challenge of China Society of Image and Graphics (FMFCC-V). The FMFCC-V dataset is by far the first and the largest public available Asian dataset for DeepFake detection, which contains 38102 DeepFake videos and 44290 pristine videos, corresponding more than 23 million frames. The source videos in the FMFCC-V dataset are carefully collected from 83 paid individuals and all of them are Asians. The DeepFake videos are generated by four of the most popular face swapping methods. Extensive perturbations are applied to obtain a more challenging benchmark of higher diversity. The FMFCC-V dataset can lend powerful support to the development of more effective DeepFake detection methods. We contribute a comprehensive evaluation of six representative DeepFake detection methods to demonstrate the level of challenge posed by FMFCC-V dataset. Meanwhile, we provide a detailed analysis of the top submissions from the FMFCC-V competition.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"38 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113981037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards Generalization in Deepfake Detection","authors":"L. Verdoliva","doi":"10.1145/3531536.3532956","DOIUrl":"https://doi.org/10.1145/3531536.3532956","url":null,"abstract":"In recent years there have been astonishing advances in AI-based synthetic media generation. Thanks to deep learning-based approaches it is now possible to generate data with a high level of realism. While this opens up new opportunities for the entertainment industry, it simultaneously undermines the reliability of multimedia content and supports the spread of false or manipulated information on the Internet. This is especially true for human faces, allowing to easily create new identities or change only some specific attributes of a real face in a video, so-called deepfakes. In this context, it is important to develop automated tools to detect manipulated media in a reliable and timely manner. This talk will describe the most reliable deep learning-based approaches for detecting deepfakes, with a focus on those that enable domain generalization [1]. The results will be presented on challenging datasets [2,3] with reference to realistic scenarios, such as the dissemination of manipulated images and videos on social networks. Finally, new possible directions will be outlined.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133914475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Session 3: Security & Privacy I","authors":"B. S. Manjunath","doi":"10.1145/3545213","DOIUrl":"https://doi.org/10.1145/3545213","url":null,"abstract":"","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114761170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Session 6: Steganography II","authors":"Jan Butora","doi":"10.1145/3545216","DOIUrl":"https://doi.org/10.1145/3545216","url":null,"abstract":"","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"79 10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129826293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collusion-resistant Fingerprinting of Parallel Content Channels","authors":"B. Joudeh, B. Škorić","doi":"10.1145/3531536.3532953","DOIUrl":"https://doi.org/10.1145/3531536.3532953","url":null,"abstract":"The fingerprinting game is analysed when the coalition size k is known to the tracer, but the colluders can distribute themselves across L TV channels. The collusion channel is introduced and the extra degrees of freedom for the coalition are made manifest in our formulation. We introduce a payoff functional that is analogous to the single TV channel case, and is conjectured to be closely related to the fingerprinting capacity. For the binary alphabet case under the marking assumption, and the restriction of access to one TV channel per person per segment, we derive the asymptotic behavior of the payoff functional. We find that the value of the maximin game for our payoff is asymptotically equal to L2/k2 2 ln 2, with optimal strategy for the tracer being the arcsine distribution, and for the coalition being the interleaving attack across all TV channels, as well as assigning an equal number of colluders across the L TV channels.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115209749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Chew, Christine Nguyen, Samuel Berhanu, Chris Baumgart, A. Cooper
{"title":"Covert Communications through Imperfect Cancellation","authors":"Daniel Chew, Christine Nguyen, Samuel Berhanu, Chris Baumgart, A. Cooper","doi":"10.1145/3531536.3532959","DOIUrl":"https://doi.org/10.1145/3531536.3532959","url":null,"abstract":"We propose a method for covert communications using an IEEE 802.11 OFDM/QAM packet as a carrier. We show how to hide the covert message so that the transmitted signal does not violate the spectral mask specified by the standard, and we determine its impact on the OFDM packet error rate (PER). We show conditions under which the hidden signal is not usable and those under which it can be retrieved with a usable bit error rate (BER). The hidden signal is extracted by cancellation of the OFDM signal in the covert receiver. We explore the effects of the hidden signal on OFDM parameter estimation and the covert signal BER. We test the detectability of the covert signal with and without cancellation. We conclude with an experiment where we inject the hidden signal into Over-The-Air (OTA) recordings of 802.11 packets and demonstrate the effectiveness of the technique using that real-world OTA data.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130558663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}