{"title":"面向深度伪造检测的泛化","authors":"L. Verdoliva","doi":"10.1145/3531536.3532956","DOIUrl":null,"url":null,"abstract":"In recent years there have been astonishing advances in AI-based synthetic media generation. Thanks to deep learning-based approaches it is now possible to generate data with a high level of realism. While this opens up new opportunities for the entertainment industry, it simultaneously undermines the reliability of multimedia content and supports the spread of false or manipulated information on the Internet. This is especially true for human faces, allowing to easily create new identities or change only some specific attributes of a real face in a video, so-called deepfakes. In this context, it is important to develop automated tools to detect manipulated media in a reliable and timely manner. This talk will describe the most reliable deep learning-based approaches for detecting deepfakes, with a focus on those that enable domain generalization [1]. The results will be presented on challenging datasets [2,3] with reference to realistic scenarios, such as the dissemination of manipulated images and videos on social networks. Finally, new possible directions will be outlined.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Generalization in Deepfake Detection\",\"authors\":\"L. Verdoliva\",\"doi\":\"10.1145/3531536.3532956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years there have been astonishing advances in AI-based synthetic media generation. Thanks to deep learning-based approaches it is now possible to generate data with a high level of realism. While this opens up new opportunities for the entertainment industry, it simultaneously undermines the reliability of multimedia content and supports the spread of false or manipulated information on the Internet. This is especially true for human faces, allowing to easily create new identities or change only some specific attributes of a real face in a video, so-called deepfakes. In this context, it is important to develop automated tools to detect manipulated media in a reliable and timely manner. This talk will describe the most reliable deep learning-based approaches for detecting deepfakes, with a focus on those that enable domain generalization [1]. The results will be presented on challenging datasets [2,3] with reference to realistic scenarios, such as the dissemination of manipulated images and videos on social networks. Finally, new possible directions will be outlined.\",\"PeriodicalId\":164949,\"journal\":{\"name\":\"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531536.3532956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531536.3532956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In recent years there have been astonishing advances in AI-based synthetic media generation. Thanks to deep learning-based approaches it is now possible to generate data with a high level of realism. While this opens up new opportunities for the entertainment industry, it simultaneously undermines the reliability of multimedia content and supports the spread of false or manipulated information on the Internet. This is especially true for human faces, allowing to easily create new identities or change only some specific attributes of a real face in a video, so-called deepfakes. In this context, it is important to develop automated tools to detect manipulated media in a reliable and timely manner. This talk will describe the most reliable deep learning-based approaches for detecting deepfakes, with a focus on those that enable domain generalization [1]. The results will be presented on challenging datasets [2,3] with reference to realistic scenarios, such as the dissemination of manipulated images and videos on social networks. Finally, new possible directions will be outlined.