Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security最新文献

筛选
英文 中文
Session details: Keynote Talks 会议详情:主题演讲
B. S. Manjunath
{"title":"Session details: Keynote Talks","authors":"B. S. Manjunath","doi":"10.1145/3545210","DOIUrl":"https://doi.org/10.1145/3545210","url":null,"abstract":"","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125868224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detector-Informed Batch Steganography and Pooled Steganalysis 通知检测器的批量隐写和池隐写分析
Yassine Yousfi, Eli Dworetzky, J. Fridrich
{"title":"Detector-Informed Batch Steganography and Pooled Steganalysis","authors":"Yassine Yousfi, Eli Dworetzky, J. Fridrich","doi":"10.1145/3531536.3532951","DOIUrl":"https://doi.org/10.1145/3531536.3532951","url":null,"abstract":"We study the problem of batch steganography when the senders use feedback from a steganography detector. This brings an additional level of complexity to the table due to the highly non-linear and non-Gaussian response of modern steganalysis detectors as well as the necessity to study the impact of the inevitable mismatch between senders' and Warden's detectors. Two payload spreaders are considered based on the oracle generating possible cover images. Three different pooling strategies are devised and studied for a more comprehensive assessment of security. Substantial security gains are observed with respect to previous art - the detector-agnostic image-merging sender. Close attention is paid to the impact of the information available to the Warden on security.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124143833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hidden in Plain Sight - Persistent Alternative Mass Storage Data Streams as a Means for Data Hiding With the Help of UEFI NVRAM and Implications for IT Forensics 隐藏在显而易见的地方-在UEFI NVRAM的帮助下,作为数据隐藏手段的持久替代大容量存储数据流及其对IT取证的影响
Stefan Kiltz, R. Altschaffel, J. Dittmann
{"title":"Hidden in Plain Sight - Persistent Alternative Mass Storage Data Streams as a Means for Data Hiding With the Help of UEFI NVRAM and Implications for IT Forensics","authors":"Stefan Kiltz, R. Altschaffel, J. Dittmann","doi":"10.1145/3531536.3532965","DOIUrl":"https://doi.org/10.1145/3531536.3532965","url":null,"abstract":"This article presents a first study on the possibility of hiding data using the UEFI NVRAM of today's computer systems as a storage channel. Embedding and extraction of executable data as well as media data are discussed and demonstrated as a proof of concept. This is successfully evaluated using 10 different systems. This paper further explores the implications of data hiding within UEFI NVRAM for computer forensic investigations and provides forensics measures to address this new challenge.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124701867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intellectual Property (IP) Protection for Deep Learning and Federated Learning Models 深度学习和联邦学习模型的知识产权保护
F. Koushanfar
{"title":"Intellectual Property (IP) Protection for Deep Learning and Federated Learning Models","authors":"F. Koushanfar","doi":"10.1145/3531536.3532957","DOIUrl":"https://doi.org/10.1145/3531536.3532957","url":null,"abstract":"This talk focuses on end-to-end protection of the present and emerging Deep Learning (DL) and Federated Learning (FL) models. On the one hand, DL and FL models are usually trained by allocating significant computational resources to process massive training data. The built models are therefore considered as the owner's IP and need to be protected. On the other hand, malicious attackers may take advantage of the models for illegal usages. IP protection needs to be considered during the design and training of the DL models before the owners make their models publicly available. The tremendous parameter space of DL models allows them to learn hidden features automatically. We explore the 'over-parameterization' of DL models and demonstrate how to hide additional information within DL. Particularly, we discuss a number of our end-to-end automated frameworks over the past few years that leverage information hiding for IP protection, including: DeepSigns[5] and DeepMarks[2], the first DL watermarking and fingerprinting frameworks that work by embedding the owner's signature in the dynamic activations and output behaviors of the DL model; DeepAttest[1], the first hardware-based attestation framework for verifying the legitimacy of the deployed model via on-device attestation. We also develop a multi-bit black-box DNN watermarking scheme[3] and demonstrate spread spectrum-based DL watermarking[4]. In the context of Federated Learning (FL), we show how these results can be leveraged for the design of a novel holistic covert communication framework that allows stealthy information sharing between local clients while preserving FL convergence. We conclude by outlining the open challenges and emerging directions.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128714870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identity-Referenced Deepfake Detection with Contrastive Learning 基于身份的深度假检测与对比学习
Dongyao Shen, Youjian Zhao, Chengbin Quan
{"title":"Identity-Referenced Deepfake Detection with Contrastive Learning","authors":"Dongyao Shen, Youjian Zhao, Chengbin Quan","doi":"10.1145/3531536.3532964","DOIUrl":"https://doi.org/10.1145/3531536.3532964","url":null,"abstract":"With current advancements in deep learning technology, it is becoming easier to create high-quality face forgery videos, causing concerns about the misuse of deepfake technology. In recent years, research on deepfake detection has become a popular topic. Many detection methods have been proposed, most of which focus on exploiting image artifacts or frequency domain features for detection. In this work, we propose using real images of the same identity as a reference to improve detection performance. Specifically, a real image of the same identity is used as a reference image and input into the model together with the image to be tested to learn the distinguishable identity representation, which is achieved by contrastive learning. Our method achieves superior performance on both FaceForensics++ and Celeb-DF with relatively little training data, and also achieves very competitive results on cross-manipulation and cross-dataset evaluations, demonstrating the effectiveness of our solution.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132861488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Few-shot Text Steganalysis Based on Attentional Meta-learner 基于注意元学习器的文本隐写分析
Juan Wen, Ziwei Zhang, Y. Yang, Yiming Xue
{"title":"Few-shot Text Steganalysis Based on Attentional Meta-learner","authors":"Juan Wen, Ziwei Zhang, Y. Yang, Yiming Xue","doi":"10.1145/3531536.3532949","DOIUrl":"https://doi.org/10.1145/3531536.3532949","url":null,"abstract":"Text steganalysis is a technique to distinguish between steganographic text and normal text via statistical features. Current state-of-the-art text steganalysis models have two limitations. First, they need sufficient amounts of labeled data for training. Second, they lack the generalization ability on different detection tasks. In this paper, we propose a meta-learning framework for text steganalysis in the few-shot scenario to ensure model fast-adaptation between tasks. A general feature extractor based on BERT is applied to extract universal features among tasks, and a meta-learner based on attentional Bi-LSTM is employed to learn task-specific representations. A classifier trained on the support set calculates the prediction loss on the query set with a few samples to update the meta-learner. Extensive experiments show that our model can adapt fast among different steganalysis tasks through extremely few-shot samples, significantly improving detection performance compared with the state-of-the-art steganalysis models and other meta-learning methods.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131505696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Know Your Library: How the libjpeg Version Influences Compression and Decompression Results 了解您的库:libjpeg版本如何影响压缩和解压缩结果
Martin Benes, Nora Hofer, Rainer Böhme
{"title":"Know Your Library: How the libjpeg Version Influences Compression and Decompression Results","authors":"Martin Benes, Nora Hofer, Rainer Böhme","doi":"10.1145/3531536.3532962","DOIUrl":"https://doi.org/10.1145/3531536.3532962","url":null,"abstract":"Introduced in 1991, libjpeg has become a well-established library for processing JPEG images. Many libraries in high-level languages use libjpeg under the hood. So far, little attention has been paid to the fact that different versions of the library produce different outputs for the same input. This may have implications on security-related applications, such as image forensics or steganalysis, where evidence is generated by tracking small, imperceptible changes in JPEG-compressed signals. This paper systematically analyses all libjpeg versions since 1998, including the forked libjpeg-turbo (in its latest version). It compares the outputs of compression and decompression operations for a range of parameter settings. We identify up to three distinct behaviors for compression and up to six for decompression.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128348780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Session details: Session 5: Security & Privacy II 会议详情:会议5:安全与隐私II
Daniel Chew
{"title":"Session details: Session 5: Security & Privacy II","authors":"Daniel Chew","doi":"10.1145/3545215","DOIUrl":"https://doi.org/10.1145/3545215","url":null,"abstract":"","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123002513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Session details: Session 1: Forensics 会话详细信息:会话1:取证
Rainer Böhme
{"title":"Session details: Session 1: Forensics","authors":"Rainer Böhme","doi":"10.1145/3545211","DOIUrl":"https://doi.org/10.1145/3545211","url":null,"abstract":"","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126300191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capacity Laws for Steganography in a Crowd 人群中隐写的行为能力法
Andrew D. Ker
{"title":"Capacity Laws for Steganography in a Crowd","authors":"Andrew D. Ker","doi":"10.1145/3531536.3532948","DOIUrl":"https://doi.org/10.1145/3531536.3532948","url":null,"abstract":"A steganographer is not only hiding a payload inside their cover, they are also hiding themselves amongst the non-steganographers. In this paper we study asymptotic rates of growth for steganographic data -- analogous to the classical Square-Root Law -- in the context of a 'crowd' of K actors, one of whom is a steganographer. This converts steganalysis from a binary to a K-class classification problem, and requires some new information-theoretic tools. Intuition suggests that larger K should enable the steganographer to hide a larger payload, since their stego signal is mixed in with larger amounts of cover noise from the other actors. We show that this is indeed the case, in a simple independent-pixel model, with payload growing at O(√(log K)) times the classical Square-Root capacity in the case of homogeneous actors. Further, examining the effects of heterogeneity reveals a subtle dependence on the detector's knowledge about the payload size, and the need for them to use negative as well as positive information to identify the steganographer.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115138755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信