G. Gurunagendra, V. Bharat, B. R. Raju, D. Amith, Vijay V. Pujar, C. R. Keerthi
{"title":"Microstructure, Dislocation Density and Thermal Expansion Behavior Using Thermo Elastic Models of Zircon Sand Reinforced as Cast ZA-27 Composites","authors":"G. Gurunagendra, V. Bharat, B. R. Raju, D. Amith, Vijay V. Pujar, C. R. Keerthi","doi":"10.4236/JMMCE.2021.91008","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91008","url":null,"abstract":"In the present work stir casting route is used to fabricate the ZA27 Metal matrix composites containing 3 wt%, 6 wt%, 9 wt%, and 12 wt%. Zircon sand particulates of size 100 mesh. Microstructure studies using Optical Microscopy, SEM-EDAX are carried out to ascertain the distribution and morphology of particulates in the composites. Effect of zircon sand as reinforcement on bulk density, porosity, of the fabricated composites is studied. SEM studies are carried out to understand the behavior of as-cast ZA27 alloy reinforced with zircon sand. The dislocation density of the fabricated composite affects the strength of the composites and depends on the strain due to thermal mismatch and is found to increase with increase in weight% of zircon sand. However, it does not consider casting defects of voids/clustering observed in micrographs of the fabricated composite. Porosity in composites does not have influence on Coefficient of thermal expansion (CTE) of the ZA27 composites studied using thermoelastic models like Kerner and turner model and rule of mixtures of composite.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"20 1","pages":"100-115"},"PeriodicalIF":0.0,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85955127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fatigue Response of Cold-Rolled Type-304 Stainless Steel Foil","authors":"T. P. Kieffer, J. I. Hardy","doi":"10.4236/JMMCE.2021.91007","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91007","url":null,"abstract":"This study presents the fatigue response of 304 stainless steel foil, cold-rolled to a thickness of 3.2 μm with 87 percent cold work at orientations of 0, 45, and 90 degrees to the direction of rolling. Fatigue specimens were fabricated by laminating a supportive layer of 20-μm polyimide film to one side of the foil and patterning 242 crack initiation features by photolithographic process. Progression of fatigue damage was determined through electrical resistance measurement. The fatigue response was demonstrated to be largely affected by anisotropy existing between the rolling direction and the off-axis orientations. Fatigue cracks that traveled in a direction parallel to the elongated grains (cyclic loads applied at 90-degree orientation to foil rolling direction) had the most fatigue response (undesirable characteristic). The construction of the specimens with thin foil supported by a film backing contributed to high fatigue threshold.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"367 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76408410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, Growth and Characterization of Nonlinear Optical Single Crystal of Serine Succinate","authors":"S. Akilandeswari, L. Jothi","doi":"10.4236/JMMCE.2021.91006","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91006","url":null,"abstract":"Nonlinear optical single crystal of Serine Succinate (SSA) was grown from a mixed solvent of water, ethanol and methanol. Since amino acid exhibits nonlinear optical property, it is of interest to dope them in serine. The overwhelming success of molecular engineering in controlling nonlinear optical properties in last decade has prompted better initiative in crystal engineering. In the present study single crystals of serine doped with succinic acid in different ratios have been grown by slow evaporation solution growth method. Grown serine succinate crystals were subjected to various characterization techniques. The cell parameters of the grown crystals were characterized by X-ray diffraction analysis. FT-Raman spectral studies were carried out on the SAA grown material to confirm the synthesized compound and the functional groups of serine succinate single crystal were identified from FTIR analysis. The optical transparency and upper cut off value of UV transmission spectrum of SSA crystal were recorded. Fluorescence study was also carried out for the grown materials. The mechanical hardness was estimated by Vickers’s micro hardness tester. The second harmonic generation (SHG) of the grown crystal was confirmed by Kurtz powder technique. Thermal properties of serine succinate crystal were evaluated with thermogravimetric, differential thermal and differential scanning calorimetric analyses. The SEM studies were also reported.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"4 1","pages":"75-89"},"PeriodicalIF":0.0,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89791233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and Pyrometallurgical Removal of Arsenic from Copper Concentrate Roasting Dust","authors":"Hector M. Henao, I. Paredes, R. Díaz, J. Ortiz","doi":"10.4236/jmmce.2021.96039","DOIUrl":"https://doi.org/10.4236/jmmce.2021.96039","url":null,"abstract":"This paper describes the experimental results of removing arsenic from the dust collected in electrostatic precipitators of a fluidized bed roasting furnace (RP dust). The fluidized bed roasting process generates 600 kilotons of copper concentrate per year with 3 - 6 wt% of concentration of arsenic, producing a roasted product with a low content of arsenic below 0.3 wt%. The process generates 27 kilotons of RP dust per year with a concentration of arsenic of the order of 5 wt% and copper concentration of around 20 wt%. Subsequently, the dust collected in the electrostatic precipitators is treated by hydrometallurgical methods allowing the recovery of copper, and the disposition of arsenic as scorodite. This work proposes to use a pyrometallurgy process to the volatilization of arsenic from RP dust. The obtained material can be recirculated in copper smelting furnaces allowing the recovery of valuable metals. The set of experiments carried out in the roasting of the mixture of copper concentrate/RP dust and sulfur/RP dust used different ratios of mixtures, temperatures and roasting times. By different techniques, the characterization of the RP dust determined its size distribution, morphology, and chemical and mineralogical composition. RP dust is a composite material of small particles (<5 µm) in 50 µm agglomerates, mostly amorphous, with a complex chemical composition of sulfoxides. The results of the the results have the potential to be extended to dust produced in the roasting of concentrates of nickel, lead-zinc, and gold.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74185845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Void Growth and Interaction in a Structural Aluminum Alloy: Experiments and Theory","authors":"S. Gampert, A. Siddique, T. Khraishi","doi":"10.4236/JMMCE.2021.91002","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91002","url":null,"abstract":"","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"39 1","pages":"14-37"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82193388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moumar Dieye, Mohamadou Moustapha Thiam, A. Geneyton, M. Guèye
{"title":"Monazite Recovery by Magnetic and Gravity Separation of Medium Grade Zircon Concentrate from Senegalese Heavy Mineral Sands Deposit","authors":"Moumar Dieye, Mohamadou Moustapha Thiam, A. Geneyton, M. Guèye","doi":"10.4236/jmmce.2021.96038","DOIUrl":"https://doi.org/10.4236/jmmce.2021.96038","url":null,"abstract":"Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concen-trate).","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76535115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Melting Time Prediction Model for Induction Furnace Melting Using Specific Thermal Consumption from Material Charge Approach","authors":"O. Adetunji, S. Ojo, A. Oyetunji, Newton Itua","doi":"10.4236/JMMCE.2021.91005","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91005","url":null,"abstract":"A system-level evaluation was used to analyze the induction furnace operation and process system in this study. This paper presents an investigation into the relationship between the instantaneous chemical composition of a molten bath and its energy consumption in steelmaking. This was evaluated using numerical modelling to solve for the estimated melting time prediction for the induction furnace operation. This work provides an insight into the lowering of energy consumption and estimated production time in steelmaking using material charge balancing approach. Enthalpy computation was implemented to develop an energy consumption model for the molten metal using a specific charge composition approach. Computational simulation program engine (CastMELT) was also developed in Java programming language with a MySQL database server for seamless specific charge composition analysis and testing. The model performance was established using real-time production data from a cast iron-based foundry with a 1 and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. Using parameter fitting techniques on the measured operational data of the induction furnaces at different periods of melting, the results from the model predictions and real-time melting showed good correlation between 81% - 95%. A further analysis that compared the relationship between the mass composition of a current molten bath and melting, time showed that energy consumption can be reduced with effective material balancing and controlled charge. Melting time was obtained as a function of the elemental charge composition of the molten bath in relation to the overall scrap material charge. This validates the approach taken by this research using material charge and thermodynamic of melting to optimize and better control melting operation in foundry and reduce traditional waste during iron and steel making.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"27 1","pages":"61-74"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91529268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical Conductivity of Spark Plasma Sintered W-Cu and Mo-Cu Composites for Electrical Contact Applications","authors":"N. Amalu, B. A. Okorie, J. Ugwuoke, C. Obayi","doi":"10.4236/JMMCE.2021.91004","DOIUrl":"https://doi.org/10.4236/JMMCE.2021.91004","url":null,"abstract":"Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"56 1","pages":"48-60"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83906173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrometallurgical Removal of Arsenic from Electrostatic Precipitators Dusts of Copper Smelting","authors":"Hector M. Henao, I. Paredes, R. Díaz, J. Ortiz","doi":"10.4236/jmmce.2021.96036","DOIUrl":"https://doi.org/10.4236/jmmce.2021.96036","url":null,"abstract":"","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77271771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramona Javadi Doodran, Shayan Khakmardan, A. Shirazi, Adel Shirazy
{"title":"Minimalization of Ash from Iranian Gilsonite by Froth Flotation","authors":"Ramona Javadi Doodran, Shayan Khakmardan, A. Shirazi, Adel Shirazy","doi":"10.4236/jmmce.2021.91001","DOIUrl":"https://doi.org/10.4236/jmmce.2021.91001","url":null,"abstract":"Gilsonite is a natural, brittle, and glisten tar hydrocarbon, which widely uses in the chemical, paint, and oil industry, besides asphalt production and thermal insulation. Major gangues of Gilsonite are gypsum, pyrite, silica, dolomite, calcite, and shale which are known as ash. Due to the fine liberation degree of gangue minerals from Gilsonite, most of the physical mineral processing methods are not applicable. Gilsonite has partially a behavior like coal in flotation due to its high carbon content and the similar composition of ash. As a result, flotation is one of the best methods to decrease the ash content of Gilsonite. In this study, four factors i.e. the dosage of collector, frother, and depressant, and solid to liquid ratio in three levels were examined in flotation to reduce the ash content and increase the recovery of Gilsonite. These tests were designed with the Taguchi method by Design-Expert software. Our results showed the lowest ash content of 5.2% was obtained in the condition which 200 g/t Gasoil as collector, 100 g/t MIBC as a frother, 300 g/t sodium silicate as a depressant, and pulp density was 5% solid to liquid weight ratio.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90173988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}