Moumar Dieye, Mohamadou Moustapha Thiam, A. Geneyton, M. Guèye
{"title":"塞内加尔重矿砂中品位锆石精矿磁选重选回收独居石","authors":"Moumar Dieye, Mohamadou Moustapha Thiam, A. Geneyton, M. Guèye","doi":"10.4236/jmmce.2021.96038","DOIUrl":null,"url":null,"abstract":"Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concen-trate).","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Monazite Recovery by Magnetic and Gravity Separation of Medium Grade Zircon Concentrate from Senegalese Heavy Mineral Sands Deposit\",\"authors\":\"Moumar Dieye, Mohamadou Moustapha Thiam, A. Geneyton, M. Guèye\",\"doi\":\"10.4236/jmmce.2021.96038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concen-trate).\",\"PeriodicalId\":16488,\"journal\":{\"name\":\"Journal of Minerals and Materials Characterization and Engineering\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Minerals and Materials Characterization and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jmmce.2021.96038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Minerals and Materials Characterization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmmce.2021.96038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monazite Recovery by Magnetic and Gravity Separation of Medium Grade Zircon Concentrate from Senegalese Heavy Mineral Sands Deposit
Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concen-trate).