Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines最新文献
{"title":"Strengthening the Current Class Location Designation System","authors":"D. Willson, I. Colquhoun, D. Carnes","doi":"10.1115/IPC2018-78672","DOIUrl":"https://doi.org/10.1115/IPC2018-78672","url":null,"abstract":"CSA Z662, Oil and gas pipeline systems, defines class location as “a geographical area classified according to its approximate population density and other characteristics that are considered when designing and pressure testing piping to be located in the area.” In other words, the purpose of class location designations is to identify areas where specific measures are considered necessary to enhance public safety. Designations range from Class 1 (rural) to Class 4 (urban with high-rise buildings).\u0000 The current class location framework relies mainly on a location factor (L) to represent reliability. Higher reliability is achieved by using more resistant pipe — that is thicker and/or stronger — to reduce the probability of failure from operational hazards, such as corrosion and mechanical damage caused by line strikes. Currently, the need for a particular level of reliability is driven principally by the number of people impacted.\u0000 This paper discusses possible measures that can be implemented in the next edition of Z662 that, beyond requiring thicker pipe for certain products, will strengthen the class location designation system by considering the potential impact radius of an ignited gas pipeline rupture, as well as the occupancy and nature of buildings within assessment areas. The paper also discusses possible changes to improve environmental protection by introducing the concept of a designated geographical area (DGA) and associated requirements, enhancements to valve spacing requirements, and the handling of changes to class location designations for existing pipelines through interim measures and retroactivity.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132807042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Alternate Technologies and Advancements Through Special Permits, Waivers, and Other Technology Notifications","authors":"Kenneth Y. Lee, M. Secor","doi":"10.1115/IPC2018-78549","DOIUrl":"https://doi.org/10.1115/IPC2018-78549","url":null,"abstract":"The United States Department of Transportation (USDOT), Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety recognizes there may be technologies and advancements not currently allowed by the federal regulations that can improve safety, and has processes to allow such technologies and advancements. These processes include Special Permits, State Waivers, and Other Technology Notifications. This paper describes observations and trends related to PHMSA’s accumulated data from the last few decades, and includes a summary of new technologies and innovative solutions that are not currently covered in codified standards or regulations.1","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133648602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilizing Value Management to Increase Project Competitiveness","authors":"Michael Tozer, Debra Tetteh-Wayoe","doi":"10.1115/IPC2018-78230","DOIUrl":"https://doi.org/10.1115/IPC2018-78230","url":null,"abstract":"With the current economic pressures being faced by the oil and gas sector, organizations are increasingly required to become more competitive on their capital projects. Enbridge has implemented the practice of Value Management (VM) to help achieve the needs and expectations of stakeholders with the least possible resources.\u0000 VM is a systematic approach that is used by a multidisciplinary team to improve the value of a project (or aspects of a project) through the analysis of its functions, and is most effective when applied at the planning and development stages. A value study enables the expected performance (i.e. the desired functions) of a project to be clearly identified at the onset, and assesses a range of possible solutions/alternatives against the functions required by the owner.\u0000 While VM is commonly used in the manufacturing industry, as well as on transportation and municipal projects, few examples of its application in the oil and gas sector were found. Enbridge researched a variety of VM best practices and created a framework that compliments existing company practices.\u0000 This paper also highlights how the value methodology was recently applied to a capacity expansion project at the Front End Engineering and Design (FEED) stage. Our approach to the various elements of a value study will be discussed, including pre-workshop activities, the VM workshop, and post-workshop activities.\u0000 Enbridge has seen significant benefits from the VM studies completed on projects to-date. Given the broad applicability of the value methodology, it is believed that our approach can also be successfully applied in other areas (e.g. improving business processes).","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116582837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical Analyses of Incidents on Onshore Hazardous Liquid Pipelines Based on PHMSA Database","authors":"Shengli Liu, Liang Yongtu, Xiao Wang, Dong Han","doi":"10.1115/IPC2018-78528","DOIUrl":"https://doi.org/10.1115/IPC2018-78528","url":null,"abstract":"To improve the safety of a pipeline system, engineers use different methods to diagnose the hazardous pipeline accidents. However, most methods ignore the time dependence of pipeline failures. The aim of this paper is to provide a novel approach to analyzing the hazardous liquid pipeline incidents’ temporal structure. The database of hazardous liquid spillages from the US between 2002 and 2018 is collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The result suggests that the whole oil pipeline incident sequence cannot be modeled as a Poisson (random and independent) process, which means that a hazardous liquid pipeline incident is not statistically independent from the time elapsed since the previous event. But the serious pipeline failures are random and unpredictable. The analysis also indicates that the equipment failure, corrosion, material failure and incorrect operation are the four leading failure causes, responsible for most of the total incidents. The study provides insights into the current state of hazard liquid pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123622670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weichao Yu, K. Wen, Yichen Li, Weihe Huang, J. Gong
{"title":"A Methodology to Assess the Gas Supply Capacity and Gas Supply Reliability of a Natural Gas Pipeline Network System","authors":"Weichao Yu, K. Wen, Yichen Li, Weihe Huang, J. Gong","doi":"10.1115/IPC2018-78173","DOIUrl":"https://doi.org/10.1115/IPC2018-78173","url":null,"abstract":"Natural gas pipeline network system is a critical infrastructure connecting gas resource and market, which is composed with the transmission pipeline system, underground gas storage (UGS) and liquefied natural gas (LNG) terminal demand. A methodology to assess the gas supply capacity and gas supply reliability of a natural gas pipeline network system is developed in this paper. Due to random failure and maintenance action of the components in the pipeline network system, the system can be in a number of operating states. The methodology is able to simulate the state transition process and the duration of each operating state based on a Monte Carlo approach. After the system transits to other states, the actual flow rate will change accordingly. The hydraulic analysis, which includes thermal-hydraulic simulation and maximum flow algorithm, is applied to analyze the change law of the actual flow rate. By combining the hydraulic analysis into the simulation of the state transition process, gas supply capacity of the pipeline network system is quantified. Furthermore, considering the uncertainty of market demand, the load duration curve (LDC) method is employed to predict the amount of demand for each consumer node. The gas supply reliability is then calculated by comparing the gas supply capacity with market demand. Finally, a detailed procedure for gas supply capacity and gas supply reliability assessment of a natural gas pipeline network system is presented, and its feasibility is confirmed with a case study. In the case study, the impact of market demand uncertainty on gas supply reliability is investigated in detail.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"05 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127350550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francois Ayello, Hao Chen, N. Sridhar, Lydia A. Ruiz, Travis Sera, Mari Shironishi
{"title":"The Use of Sensitivity Analyses for Optimum Data Gathering in Risk and Threats Assessments","authors":"Francois Ayello, Hao Chen, N. Sridhar, Lydia A. Ruiz, Travis Sera, Mari Shironishi","doi":"10.1115/IPC2018-78402","DOIUrl":"https://doi.org/10.1115/IPC2018-78402","url":null,"abstract":"Pipeline engineers routinely perform risk assessments using a linear approach that begins with data collection, progresses through threat identification, and concludes with risk assessment. This linear risk assessment process leads to some inefficiencies. For example, since all data is gathered in the first step, inconsequential data might be collected during the data gathering process that diverts resources from other pipelines. This paper presents a different approach, where data is gathered iteratively based on its risk reduction value derived from a sensitivity analysis and data collection cost. Each time data is gathered; future risk predictions become more certain. This process is stopped when the cost of data gathering activities outweighs the benefit to risk predictions.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129271740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multi-Module Systemic Approach for the Supply Reliability Analysis of Multi-Product Pipeline Under Pump Units Failure","authors":"Xingyuan Zhou, Qi Liao, Mengyun Lv, H. Zhang, Yongtu Liang, Chengcheng Xiang","doi":"10.1115/IPC2018-78367","DOIUrl":"https://doi.org/10.1115/IPC2018-78367","url":null,"abstract":"As the primary means of refined products transportation, multi-product pipeline plays a vital role in connecting refineries to local markets. Once disruptions occur, it will cause security issue on oil supply to downstream markets, even on the economy and stability of society. Based on the conventional reliability theory and detailed scheduling method of multi-product pipeline considering hydraulic constraints, this paper firstly proposes a multi-module systemic approach for the supply reliability analysis of multi-product pipeline under pump units failure conditions. Pump units are important corollary equipment in multi-product pipeline and their failure would affect the pipeline normal operation and downstream oil supply greatly. The approach includes three modules, namely, pump units analysis module, pipeline system analysis module and reliability evaluation module. In the pump units analysis module, Failure Mode and Effects Analysis (FMEA) method is adopted to analyse the correlations between pump units failure modes and causes. The Monte Carlo simulation method is employed to generate different failure scenarios based on the estimated failure rate of pump units. In the pipeline system analysis module, the detailed scheduling method of multi-product pipeline is adopted to calculate the maximum supply capacity for all delivery stations under a specific scenario. Due to the difficulty in solving detailed scheduling problem considering hydraulic constraints directly, two mixed integer linear programming (MILP) models are established. In the reliability evaluation module, the indexes of shortage, probability and adequacy are calculated to analyse the supply reliability quantitatively from global perspective and individual perspective. Finally, the proposed approach is applied to a real-world multi-product pipeline in Zhejiang, China. It is proved that this approach could provide significant guidelines for the supply reliability analysis of multi-product pipeline.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"116 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117185122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining Expert Knowledge and Automation to Maximize Pipeline Route Optionality and Defensibility: A Case Study of the Aurora Pipeline","authors":"Kevin Seel, Adam Phillips","doi":"10.1115/IPC2018-78289","DOIUrl":"https://doi.org/10.1115/IPC2018-78289","url":null,"abstract":"It has become increasingly difficult to successfully develop pipeline projects in North America. This stems from complex matters including environmental opposition, Indigenous rights, regulatory uncertainty, investor indecision and evolving policy. To manage these challenges, developers are advised to consider a route development methodology that provides both optionality and defensibility. This can be achieved through a process that characterizes the landscape based on level of constraint related to environmental and social factors, construction and operational limitations, strategic drivers and cost. Such a process must be analytically robust and able to adapt to new information and priorities emerging throughout the development phase. Particularly in the case of large-scale pipeline projects, traditional routing methods may prove too costly and time-consuming to undertake this analysis in a practical manner. Consequently, proponents may be left with fewer and less defensible route options.\u0000 Recently, the Aurora Pipeline Team sought to advance preliminary corridor routing under a paradigm of maximum optionality and defensibility in evaluating pipeline routes across northern British Columbia, inclusive of strategic interconnections. Implementing Golder Associates Ltd. automated routing decision support system called “GoldSET” the team was able to rapidly perform a robust corridor options analysis covering over 400,000 km2. This systematic, data-driven process involved subject matter expert assessment of the level of constraint or opportunity associated with individual data layers in consideration of multiple, thematic scenarios. Having consolidated and mapped the aggregated level of constraint across northern BC, routes were generated along paths of least constraint with segments tested for agreement across multiple scenarios. In total, 72 routes comprising more than 50,000 km in total length were developed and evaluated for feasibility. This refinement process ultimately resulted in an interconnected network of approximately 180 pre-screened route segments totaling nearly 12,237 km of potential routes. The advantage provided in subsequent stages of the project was the ability to recognize, quantify and evaluate the tradeoffs between segments, and adapt the route as fatal flaws were encountered. During ensuing, constructability-focused phases of the routing process, optionality had been pre-established, and route changes were able to be made quickly where required. The automated process, in companion to subject matter expert participation, also provided a clear and defensible rationale as to why routes were considered optimal, and how potential impacts to sensitive features were addressed. The evaluation was completed in far less time and more cost-effectively than otherwise possible with traditional methods.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126704613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Yuan, Zhi-feng Wu, Wang Li, Bo Yu, Changchun Wu
{"title":"Comparative Study on Atmospheric Temperature Models for the Buried Hot Oil Pipeline","authors":"Qing Yuan, Zhi-feng Wu, Wang Li, Bo Yu, Changchun Wu","doi":"10.1115/IPC2018-78451","DOIUrl":"https://doi.org/10.1115/IPC2018-78451","url":null,"abstract":"In previous studies, the atmospheric temperature was generally assumed to be constant during a period (commonly a month) for the numerical simulation on the buried hot oil pipeline. The rationality of this assumption is controversial due to the absence of quantitative results, and thus it needs to be further verified or investigated to make atmospheric temperature approximation more convincing. In this study, based on the changing trend of actual atmospheric temperature, three mathematical models are established and their expressions are presented according to different approximations. And the relationships among these three expressions are obtained by utilizing mathematical derivation. On the basis of three atmospheric temperature models, the weakly unsteady single oil transportation and strongly unsteady batch transportation are numerically simulated, respectively. According to numerical results, the oil temperature at the pipeline ending point and the soil temperature field are compared for these three models. In order to make comparisons more convincing, the influences of the physical properties of crude oil, operation parameters, pipeline parameters and pipeline environments on the deviations of numerical results are compared and analyzed. Finally, based on all comparisons on the deviations of numerical results, the conclusions are drawn, which can provide beneficial reference for the choice of atmospheric temperature models in future numerical simulation study on the buried hot oil pipeline.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115169760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Canadian Operator Based Framework for Pipeline Pressure Tests: Lessons Learned","authors":"Nicole-Lee M. Robertson, B. Campbell","doi":"10.1115/IPC2018-78666","DOIUrl":"https://doi.org/10.1115/IPC2018-78666","url":null,"abstract":"Commissioning pressure tests are a critical life-of-asset record. Successfully achieving an acceptable pressure test can be challenging both at an execution and documentation perspective. This paper aims to assist in streamlining the approach to pipeline commissioning pressure tests between operators to increase efficiency and drive consistency across the pipeline industry. Key lessons learned from the planning stages through to the quality control turnover are highlighted. Lessons learned, respective to pressure tests, include: road map of Canadian regulations, tabulated equipment requirements, suggested instrumentation setup, template checklist for test plans, outlined company to contractor responsibilities, as well as a proposed internal process to manage and accept completed tests.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"258263 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123288298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}