基于PHMSA数据库的陆上危险液体管道事故统计分析

Shengli Liu, Liang Yongtu, Xiao Wang, Dong Han
{"title":"基于PHMSA数据库的陆上危险液体管道事故统计分析","authors":"Shengli Liu, Liang Yongtu, Xiao Wang, Dong Han","doi":"10.1115/IPC2018-78528","DOIUrl":null,"url":null,"abstract":"To improve the safety of a pipeline system, engineers use different methods to diagnose the hazardous pipeline accidents. However, most methods ignore the time dependence of pipeline failures. The aim of this paper is to provide a novel approach to analyzing the hazardous liquid pipeline incidents’ temporal structure. The database of hazardous liquid spillages from the US between 2002 and 2018 is collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The result suggests that the whole oil pipeline incident sequence cannot be modeled as a Poisson (random and independent) process, which means that a hazardous liquid pipeline incident is not statistically independent from the time elapsed since the previous event. But the serious pipeline failures are random and unpredictable. The analysis also indicates that the equipment failure, corrosion, material failure and incorrect operation are the four leading failure causes, responsible for most of the total incidents. The study provides insights into the current state of hazard liquid pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Analyses of Incidents on Onshore Hazardous Liquid Pipelines Based on PHMSA Database\",\"authors\":\"Shengli Liu, Liang Yongtu, Xiao Wang, Dong Han\",\"doi\":\"10.1115/IPC2018-78528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the safety of a pipeline system, engineers use different methods to diagnose the hazardous pipeline accidents. However, most methods ignore the time dependence of pipeline failures. The aim of this paper is to provide a novel approach to analyzing the hazardous liquid pipeline incidents’ temporal structure. The database of hazardous liquid spillages from the US between 2002 and 2018 is collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The result suggests that the whole oil pipeline incident sequence cannot be modeled as a Poisson (random and independent) process, which means that a hazardous liquid pipeline incident is not statistically independent from the time elapsed since the previous event. But the serious pipeline failures are random and unpredictable. The analysis also indicates that the equipment failure, corrosion, material failure and incorrect operation are the four leading failure causes, responsible for most of the total incidents. The study provides insights into the current state of hazard liquid pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高管道系统的安全性,工程师们采用不同的方法来诊断管道危险事故。然而,大多数方法忽略了管道故障的时间依赖性。本文的目的是为分析危险液体管道事故的时间结构提供一种新的方法。2002年至2018年美国危险液体泄漏数据库由美国运输部管道危险物质安全管理局收集。结果表明,整个石油管道事件序列不能被建模为泊松(随机和独立)过程,这意味着危险液体管道事件与前一个事件发生后的时间在统计上不是独立的。但严重的管道故障是随机和不可预测的。分析还表明,设备故障、腐蚀、材料故障和不正确操作是四大主要故障原因,占事故总数的大部分。该研究为美国危险液体管道的现状提供了见解,并为此类管道的定量风险评估提供了基线故障统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analyses of Incidents on Onshore Hazardous Liquid Pipelines Based on PHMSA Database
To improve the safety of a pipeline system, engineers use different methods to diagnose the hazardous pipeline accidents. However, most methods ignore the time dependence of pipeline failures. The aim of this paper is to provide a novel approach to analyzing the hazardous liquid pipeline incidents’ temporal structure. The database of hazardous liquid spillages from the US between 2002 and 2018 is collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The result suggests that the whole oil pipeline incident sequence cannot be modeled as a Poisson (random and independent) process, which means that a hazardous liquid pipeline incident is not statistically independent from the time elapsed since the previous event. But the serious pipeline failures are random and unpredictable. The analysis also indicates that the equipment failure, corrosion, material failure and incorrect operation are the four leading failure causes, responsible for most of the total incidents. The study provides insights into the current state of hazard liquid pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信