Journal of molecular and cellular cardiology最新文献

筛选
英文 中文
Time-restricted feeding mediated synchronization of circadian rhythms to sustain cardiovascular health 限时喂养介导的昼夜节律同步以维持心血管健康
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-10 DOI: 10.1016/j.yjmcc.2025.07.007
Girish C. Melkani
{"title":"Time-restricted feeding mediated synchronization of circadian rhythms to sustain cardiovascular health","authors":"Girish C. Melkani","doi":"10.1016/j.yjmcc.2025.07.007","DOIUrl":"10.1016/j.yjmcc.2025.07.007","url":null,"abstract":"<div><div>Circadian rhythm is critical in maintaining metabolic homeostasis, including cardiac health, with disruptions often leading to adverse cardiac outcomes. Time-restricted feeding/eating (TRF/TRE) is a dietary approach that limits food intake to specific hours during an organism's active phase, daytime for diurnal animals and nighttime for nocturnal ones. This strategy has shown promise in realigning circadian rhythms and reducing the negative effects of circadian disruption on heart function. This review examines the intricate relationship between circadian rhythms and cardiac health, highlighting the molecular mechanisms governed by central and peripheral clocks. We discuss how circadian misalignment contributes to cardiovascular disease and explore how TRF/TRE can restore circadian synchronization, particularly in the context of lipid metabolism, gene expression, and other physiological processes essential for heart function. The review also examines the impact of TRF/TRE on cardiac renovation, particularly under conditions of circadian disruption associated with cardiovascular and cardiometabolic disorders. We further explore potential molecular mechanisms, including the modulation of clock genes and lipid metabolic pathways, such as diacylglycerol O-acyltransferase 2 (DGAT2), that underpin the cardioprotective effects of TRF. By consolidating findings from genetic and translational animal models and human studies, we underscore the promise of TRF/TRE in improving cardiac outcomes and propose areas for future research. The potential of TRF/TRE as a therapeutic intervention for cardiovascular disease warrants further investigation, particularly in understanding its long-term effects on cardiac health and its integration into clinical practice.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 1-10"},"PeriodicalIF":4.9,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyruvate kinase splice variants in fibroblasts influence cardiac remodeling after myocardial infarction in male mice 成纤维细胞中丙酮酸激酶剪接变异影响雄性小鼠心肌梗死后的心脏重构。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-10 DOI: 10.1016/j.yjmcc.2025.07.005
Collin K. Wells , Daniel C. Nguyen , Robert E. Brainard , Lindsey A. McNally , Maleesha De Silva , Kenneth R. Brittian , Lauren Garrett , Madison S. Taylor , Yania Martinez-Ondaro , Caitlin Howard , Snigdha Suluru , Sujith Dassanayaka , Tamer M.A. Mohamed , Richa Singhal , Andrew A. Gibb , Pawel K. Lorkiewicz , Joseph B. Moore IV , Steven P. Jones , Bradford G. Hill
{"title":"Pyruvate kinase splice variants in fibroblasts influence cardiac remodeling after myocardial infarction in male mice","authors":"Collin K. Wells ,&nbsp;Daniel C. Nguyen ,&nbsp;Robert E. Brainard ,&nbsp;Lindsey A. McNally ,&nbsp;Maleesha De Silva ,&nbsp;Kenneth R. Brittian ,&nbsp;Lauren Garrett ,&nbsp;Madison S. Taylor ,&nbsp;Yania Martinez-Ondaro ,&nbsp;Caitlin Howard ,&nbsp;Snigdha Suluru ,&nbsp;Sujith Dassanayaka ,&nbsp;Tamer M.A. Mohamed ,&nbsp;Richa Singhal ,&nbsp;Andrew A. Gibb ,&nbsp;Pawel K. Lorkiewicz ,&nbsp;Joseph B. Moore IV ,&nbsp;Steven P. Jones ,&nbsp;Bradford G. Hill","doi":"10.1016/j.yjmcc.2025.07.005","DOIUrl":"10.1016/j.yjmcc.2025.07.005","url":null,"abstract":"<div><div>Fibroblasts are crucial for cardiac repair after myocardial infarction (MI). In response to signaling cues, they differentiate to phenotypes with robust capacities to synthesize and secrete extracellular matrix (ECM) and signaling molecules. Although activated fibroblast phenotypes are associated with pronounced changes in metabolism, it remains unclear how the metabolic network upholds the effector functions of fibroblasts in the infarcted heart. We found that two enzymes that could facilitate a phosphoenolpyruvate cycle, i.e. pyruvate kinase muscle isoform 2 (PKM2) and phosphoenolpyruvate carboxykinase 2 (PCK2), are elevated in the heart after MI. Although <em>Pck2</em> deletion had no effect on post-MI remodeling, fibroblast-specific switching of <em>Pkm2</em> to <em>Pkm1</em> (fb<em>Pkm2 → 1</em>) mitigated ventricular dilation, wall thinning, and losses in ejection fraction caused by MI. Despite these salutary effects, fb<em>Pkm2 → 1</em> switching did not alter cardiac fibrosis in vivo, nor did it affect collagen production, cytokine or chemokine secretion, myofibroblast differentiation markers, or transcriptional regulation in vitro. Nevertheless, <em>Pkm2 → 1</em> splice variant switching increased myofibroblast contractile activity as well as influenced the metabolic phenotype of fibroblasts, as shown by increased pyruvate kinase activity, higher mitochondrial respiratory capacity, and elevation in glycolytic intermediate abundance. Despite these changes, <em>Pkm2 → 1</em> switching had relatively minor effects on glucose carbon fate, as determined by stable isotope-resolved metabolomics. Nevertheless, these metabolic data demonstrate that cardiac fibroblasts exhibit minimal glucose-supported de novo glycine synthesis in vitro, yet possess high hexosamine and glucuronate biosynthetic pathway activity. Collectively, these findings reveal that fibroblast PKM isoforms influence post-MI remodeling, highlighting pyruvate kinase as a potential therapeutic target.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 11-26"},"PeriodicalIF":4.9,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144618600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluble αKlotho interacts with Hsp90aa1 to inhibit the chaperone machinery-mediated Hif1α stabilization and alleviate CKD-induced vascular calcification 可溶性α - klotho与Hsp90aa1相互作用,抑制伴侣机制介导的Hif1α稳定,减轻ckd诱导的血管钙化。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-05 DOI: 10.1016/j.yjmcc.2025.07.003
Fengyang Xu , Jialin Guo , Yunyun Guo , Jiaxin Ma , Wentao Sang , Xiangkai Zhao , Jian Zhang , Tonghui Xu , Feng Xu , Yuguo Chen
{"title":"Soluble αKlotho interacts with Hsp90aa1 to inhibit the chaperone machinery-mediated Hif1α stabilization and alleviate CKD-induced vascular calcification","authors":"Fengyang Xu ,&nbsp;Jialin Guo ,&nbsp;Yunyun Guo ,&nbsp;Jiaxin Ma ,&nbsp;Wentao Sang ,&nbsp;Xiangkai Zhao ,&nbsp;Jian Zhang ,&nbsp;Tonghui Xu ,&nbsp;Feng Xu ,&nbsp;Yuguo Chen","doi":"10.1016/j.yjmcc.2025.07.003","DOIUrl":"10.1016/j.yjmcc.2025.07.003","url":null,"abstract":"<div><div>Recent studies have highlighted the significance of soluble αKlotho in renal dysfunction-associated vascular health, however, the underlying molecular mechanisms by which soluble αKlotho maintains the vascular smooth muscle cells (VSMCs) phenotype and prevents vascular calcification remain unclear. Clinical analyses revealed an inverse correlation between circulating αKlotho levels and vascular calcification severity in early CKD patients. Recombinant protein or lentiviral vector transfection of soluble αKlotho significantly suppressed the osteogenic transdifferentiation of VSMCs in vitro. AAV-mediated overexpression of soluble αKlotho in VSMCs remarkably reduced vascular calcification without altering circulating soluble αKlotho levels or mineral metabolism in mice under a high-phosphate diet after nephrectomy. We also employed a combination of transcriptomics and proteomics approaches, as well as in vitro and in vivo vascular calcification models, and determined that soluble αKlotho specifically suppressed Hsp90aa1 activation-mediated osteogenic transdifferentiation of VSMCs and vascular calcification. The Hsp90aa1-specific inhibitor, 17-AAG, acted as an efficient therapeutic approach to attenuate vascular calcification in vivo and in vitro. Moreover, we revealed that the phosphorylation of Hsp90aa1 at Thr5/7 modulated its chaperone activity to stabilize Hif1α, thereby playing a causative role in the pathogenesis of vascular calcification. Upregulation of soluble αKlotho expression in VSMCs enhanced the interaction with Hsp90aa1 and blunted the phosphorylation of Hsp90aa1 at Thr5/7, which abolished Hsp90aa1-Hif1α axis activation in response to osteogenic induction. Our findings revealed a crucial pathway that soluble αKlotho interacts with Hsp90aa1 and suppresses the activation of the Hsp90aa1-Hif1α axis, which is involved in the osteogenic transdifferentiation of VSMCs and vascular calcification. Targeting Hsp90 may be a promising strategy for vascular calcification treatment, as various HSP90 inhibitors have been used for a range of clinical conditions.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Pages 100-116"},"PeriodicalIF":4.9,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144584174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diabetic cardiomyopathy: insights into pathophysiology, diagnosis and clinical management 糖尿病性心肌病的临床管理与病理生理学和诊断。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-05 DOI: 10.1016/j.yjmcc.2025.06.013
David Chen , Andrew Sindone , Michael L.H. Huang , Karlheinz Peter , Alicia J. Jenkins
{"title":"Diabetic cardiomyopathy: insights into pathophysiology, diagnosis and clinical management","authors":"David Chen ,&nbsp;Andrew Sindone ,&nbsp;Michael L.H. Huang ,&nbsp;Karlheinz Peter ,&nbsp;Alicia J. Jenkins","doi":"10.1016/j.yjmcc.2025.06.013","DOIUrl":"10.1016/j.yjmcc.2025.06.013","url":null,"abstract":"<div><div>Diabetes mellitus is associated with significant morbidity and premature mortality for which heart failure (HF) is a major cause. HF may be due to ischaemia, hypertension, valvular disease, uraemia, or a specific diabetic cardiomyopathy, and multiple causes may co-exist. A recent systematic review suggests that &gt;40 % of people with type 2 diabetes have diastolic dysfunction without a reduction of cardiac systolic function. In people with type 1 diabetes without known cardiovascular disease, 16 % had systolic or diastolic dysfunction. Early diabetic cardiomyopathy is asymptomatic and can progress to symptomatic HF via increasing cardiomyocyte hypertrophy and death as well as cardiac fibrosis. The 5-year mortality rate for HF is similar or worse than many common cancers. There have been significant recent advances in HF treatment including sodium-glucose co-transport 2 inhibitors (SGLT2i) and angiotensin receptor-neprilysin inhibitors (ARNi), and promising therapies such as finerenone and glucagon-like peptide-1 receptor agonists (GLP-1RA). SGLT2i, finerenone, and GLP-1RA may also have a role in HF prevention in asymptomatic diabetic cardiomyopathy. While there is currently no specific treatment for diabetic cardiomyopathy that goes beyond general HF treatment, there is promising research into innovative technologies such as gene and stem cell therapies. Also, digital technologies will likely have an increasing role in diabetic cardiomyopathy treatment. Herein we review the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy, with a focus on existing, emerging, and potentially promising novel therapies. We provide practical tables that summarise treatments at each stage as well as important practice points for commonly prescribed drugs.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 55-69"},"PeriodicalIF":4.9,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144584173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth muscle-specific HuR knockout attenuates vascular calcification 平滑肌特异性HuR敲除可减轻血管钙化。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-05 DOI: 10.1016/j.yjmcc.2025.07.002
Ang Chen, Peidong Yuan, Yue Lu, Chang Ma, Fei Xue, Jianmin Yang, Yun Zhang, Wencheng Zhang
{"title":"Smooth muscle-specific HuR knockout attenuates vascular calcification","authors":"Ang Chen,&nbsp;Peidong Yuan,&nbsp;Yue Lu,&nbsp;Chang Ma,&nbsp;Fei Xue,&nbsp;Jianmin Yang,&nbsp;Yun Zhang,&nbsp;Wencheng Zhang","doi":"10.1016/j.yjmcc.2025.07.002","DOIUrl":"10.1016/j.yjmcc.2025.07.002","url":null,"abstract":"<div><div>Vascular calcification is a common pathological feature of atherosclerosis, chronic kidney disease, vascular injury and aging. Human antigen R (HuR), a widely expressed RNA-binding protein, plays a key role in the regulation of homeostasis and pathological conditions such as cancer and cardiovascular disease, but its role in vascular calcification remains unclear. In this study, we generated smooth muscle-specific HuR knockout (HuR<sup>SMKO</sup>) mice to investigate the function of HuR in vascular calcification. The HuR level increased under calcifying conditions, and high phosphate levels increased HuR expression via activating transcription factor 4 (ATF4). HuR overexpression exacerbated high phosphate-induced calcification, whereas HuR deficiency inhibited high phosphate-induced calcification in VSMCs. Smooth muscle-specific knockout of HuR protected against vascular calcification in vivo. Additionally, treatment with the HuR inhibitor CMLD-2 significantly attenuated calcification in mice. Mechanistically, HuR binds directly to Runt-related transcription factor 2 (Runx2) mRNA, increasing its stability and protein expression, which facilitates vascular calcification. These findings demonstrate that HuR plays a critical role in the regulation of vascular calcification through the posttranscriptional control of Runx2.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Pages 117-128"},"PeriodicalIF":4.9,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144575673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms” [Journal of Molecular and Cellular Cardiology. 194 (2024): 118–132] “心房颤动与癌症、抗癌治疗和潜在机制”的更正[j] . Molecular and Cellular Cardiology. 194(2024): 118-132。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-04 DOI: 10.1016/j.yjmcc.2025.06.010
Adnan Shaaban , Shane S. Scott , Ashley N. Greenlee , Nkongho Binda , Noor Ali , Averie Webb , Shuliang Guo , Najhee Purdy , Nicholas Pennza , Alma Habib , Somayya J. Mohammad , Sakima A. Smith
{"title":"Corrigendum to “Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms” [Journal of Molecular and Cellular Cardiology. 194 (2024): 118–132]","authors":"Adnan Shaaban ,&nbsp;Shane S. Scott ,&nbsp;Ashley N. Greenlee ,&nbsp;Nkongho Binda ,&nbsp;Noor Ali ,&nbsp;Averie Webb ,&nbsp;Shuliang Guo ,&nbsp;Najhee Purdy ,&nbsp;Nicholas Pennza ,&nbsp;Alma Habib ,&nbsp;Somayya J. Mohammad ,&nbsp;Sakima A. Smith","doi":"10.1016/j.yjmcc.2025.06.010","DOIUrl":"10.1016/j.yjmcc.2025.06.010","url":null,"abstract":"","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Page 99"},"PeriodicalIF":4.9,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144563945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome” [Journal of Molecular and Cellular Cardiology 138 (2020) 291–303] 线粒体硫氧还蛋白-2维持HCN4表达并预防氧化应激介导的病窦综合征[j] . Molecular and Cellular Cardiology 138(2020) 291-303。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-02 DOI: 10.1016/j.yjmcc.2025.06.007
Bicheng Yang , Yanrui Huang , Haifeng Zhang , Yan Huang , Huanjiao Jenny Zhou , Lawrence Young , Haipeng Xiao , Wang Min
{"title":"Corrigendum to “Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome” [Journal of Molecular and Cellular Cardiology 138 (2020) 291–303]","authors":"Bicheng Yang ,&nbsp;Yanrui Huang ,&nbsp;Haifeng Zhang ,&nbsp;Yan Huang ,&nbsp;Huanjiao Jenny Zhou ,&nbsp;Lawrence Young ,&nbsp;Haipeng Xiao ,&nbsp;Wang Min","doi":"10.1016/j.yjmcc.2025.06.007","DOIUrl":"10.1016/j.yjmcc.2025.06.007","url":null,"abstract":"","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Page 85"},"PeriodicalIF":4.9,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144523395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium binding to troponin C is required for activation of the myosin-containing thick filaments in rat cardiac trabeculae 钙与肌钙蛋白C结合是激活大鼠心脏小梁含肌球蛋白粗丝所必需的。
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-07-01 DOI: 10.1016/j.yjmcc.2025.06.012
Michaeljohn Kalakoutis , Yanhong Wang , Emma Smith , Alice Arcidiacono , Cameron Hill , Samina Juma , Atsuki Fukutani , Elisabetta Brunello , Luca Fusi , Malcolm Irving
{"title":"Calcium binding to troponin C is required for activation of the myosin-containing thick filaments in rat cardiac trabeculae","authors":"Michaeljohn Kalakoutis ,&nbsp;Yanhong Wang ,&nbsp;Emma Smith ,&nbsp;Alice Arcidiacono ,&nbsp;Cameron Hill ,&nbsp;Samina Juma ,&nbsp;Atsuki Fukutani ,&nbsp;Elisabetta Brunello ,&nbsp;Luca Fusi ,&nbsp;Malcolm Irving","doi":"10.1016/j.yjmcc.2025.06.012","DOIUrl":"10.1016/j.yjmcc.2025.06.012","url":null,"abstract":"<div><div>Contraction of the muscular walls of the heart is driven by an interaction between myosin motors from the thick filaments and actin sites in the thin filaments. Each heartbeat is triggered by calcium binding to troponin in the thin filaments, which unblocks the myosin-binding sites on actin. The strength and speed of contraction is also modulated by the availability of myosin motors, which are sequestered in a helical array on the surface of the thick filaments between heartbeats. The signalling pathway controlling release of the motors from this array during the heartbeat is unknown, but there are three general hypotheses: thick-filament mechano-sensing, thin-to-thick filament signalling, and direct calcium signalling to the thick filament. Here we tested the third hypothesis by replacing the native calcium-binding subunit of troponin (TnC) with a variant which cannot bind calcium. Demembranated trabeculae from rat heart containing this variant generated no active force on addition of calcium. We measured calcium-induced release of myosin motors from the sequestered state by X-ray diffraction and from the orientation of fluorescent probes on the myosin regulatory light chain. Both methods showed the expected calcium-dependent changes in the conformation of the myosin motors in trabeculae containing native TnC, but all these changes were abolished in those containing the TnC variant that cannot bind calcium. We conclude that thick filament activation in rat heart trabeculae is not due to direct binding of calcium to thick filaments, but is mediated by calcium activation of the thin filaments by mechano-sensing or thin-to-thick filament signalling.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Pages 129-138"},"PeriodicalIF":4.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144560419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermedin1–53 improves aging-associated cardiac remodeling and dysfunction via mitochondrial SIRT3-mediated SOD2 deacetylation 中间体1 - 53通过线粒体sirt3介导的SOD2去乙酰化改善衰老相关的心脏重塑和功能障碍
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-06-30 DOI: 10.1016/j.yjmcc.2025.06.011
Deng-Ren Ji , Rui Chang , Shi-Meng Liu , Ya-Rong Zhang , Jie Zhao , Yan-Rong Yu , Mo-Zhi Jia , Ning Wu , Hui-Fang Tang , Chao-Shu Tang , Ye-Bo Zhou , Yong-Fen Qi
{"title":"Intermedin1–53 improves aging-associated cardiac remodeling and dysfunction via mitochondrial SIRT3-mediated SOD2 deacetylation","authors":"Deng-Ren Ji ,&nbsp;Rui Chang ,&nbsp;Shi-Meng Liu ,&nbsp;Ya-Rong Zhang ,&nbsp;Jie Zhao ,&nbsp;Yan-Rong Yu ,&nbsp;Mo-Zhi Jia ,&nbsp;Ning Wu ,&nbsp;Hui-Fang Tang ,&nbsp;Chao-Shu Tang ,&nbsp;Ye-Bo Zhou ,&nbsp;Yong-Fen Qi","doi":"10.1016/j.yjmcc.2025.06.011","DOIUrl":"10.1016/j.yjmcc.2025.06.011","url":null,"abstract":"<div><div>The aging-associated cardiac remodeling (AACR) is characterized by myocardial hypertrophy, fibrosis and cardiac dysfunction, which could be further aggravated by angiotensin II (Ang II) and pressure-overload in aged people. In this study, we aimed to investigate the roles and mechanisms of intermedin<sub>1</sub><sub>–</sub><sub>53</sub> (IMD<sub>1</sub><sub>–</sub><sub>53</sub>), an endogenous peptide, in AACR in aged mice (18 months) with subcutaneous Ang II infusion (1000 ng/kg/min) for 2 weeks via osmotic pump or transverse abdominal aorta constriction (AAC) surgery for 4 weeks. In aged mice undergoing Ang II infusion or AAC surgery, the results showed that the mRNA and protein levels of IMD<sub>1</sub><sub>–</sub><sub>53</sub> were significantly reduced, but the protein levels of its receptor complex components were increased; blood pressure (BP), myocardial hypertrophy, fibrosis, and cardiac dysfunction were notably aggravated; mitochondrial Sirtuin 3 (SIRT3) protein level, superoxide dismutase 2 (SOD2) activity and ATP production were remarkably decreased, but acetylated SOD2 (acSOD2) protein level was markedly increased when compared with the old mice. The above alterations could be effectively alleviated by the subcutaneous IMD<sub>1</sub><sub>–</sub><sub>53</sub> administration (5 ng/kg/min) for 2 or 4 weeks. In Ang II-stimulated cardiomyocytes, IMD<sub>1</sub><sub>–</sub><sub>53</sub> treatment improved Ang II-induced mitochondrial dysfunction and oxidative distress, up-regulated SIRT3 protein expression, and reduced acSOD2 protein level, which were notably weakened by SIRT3 knockdown. Moreover, SIRT3 deletion attenuated the protective effects of IMD<sub>1</sub><sub>–</sub><sub>53</sub> on myocardial hypertrophy, fibrosis, and cardiac dysfunction in aged mice undergoing Ang II infusion. In addition, the effect of IMD<sub>1</sub><sub>–</sub><sub>53</sub> on up-regulating SIRT3 expression was effectively inhibited by the antagonism of IMD<sub>1</sub><sub>–</sub><sub>53</sub> receptor or blocking PI3K/Akt, cAMP/PKA and AMPK signaling pathways in vitro. Taken together, IMD<sub>1</sub><sub>–</sub><sub>53</sub> alleviated AACR and cardiac dysfunction aggravated by Ang II or pressure-overload involving the improvement of mitochondrial oxidative distress through SIRT3-medaiated SOD2 deacetylation.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Pages 86-98"},"PeriodicalIF":4.9,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144548388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Hypoxic compound exercise improves cardiac function in Drosophila high fructose diet via KHK” [Journal Of Molecular And Cellular Cardiol. 201(2025):95–104] “低氧复合运动通过KHK提高果蝇高果糖饮食的心脏功能”的更正[Journal Of Molecular And Cellular Cardiol. 201(2025): 95-104]
IF 4.9 2区 医学
Journal of molecular and cellular cardiology Pub Date : 2025-06-28 DOI: 10.1016/j.yjmcc.2025.06.006
Xu Ping, Qiufang Li, Meng Ding, Zhengwen Yu, Qin Yi, Yuepeng Li, Wenzhi Gu, Ping Zhang, Zike Zhang, Lan Zheng
{"title":"Corrigendum to “Hypoxic compound exercise improves cardiac function in Drosophila high fructose diet via KHK” [Journal Of Molecular And Cellular Cardiol. 201(2025):95–104]","authors":"Xu Ping,&nbsp;Qiufang Li,&nbsp;Meng Ding,&nbsp;Zhengwen Yu,&nbsp;Qin Yi,&nbsp;Yuepeng Li,&nbsp;Wenzhi Gu,&nbsp;Ping Zhang,&nbsp;Zike Zhang,&nbsp;Lan Zheng","doi":"10.1016/j.yjmcc.2025.06.006","DOIUrl":"10.1016/j.yjmcc.2025.06.006","url":null,"abstract":"","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"205 ","pages":"Page 84"},"PeriodicalIF":4.9,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信