Collin K. Wells , Daniel C. Nguyen , Robert E. Brainard , Lindsey A. McNally , Maleesha De Silva , Kenneth R. Brittian , Lauren Garrett , Madison S. Taylor , Yania Martinez-Ondaro , Caitlin Howard , Snigdha Suluru , Sujith Dassanayaka , Tamer M.A. Mohamed , Richa Singhal , Andrew A. Gibb , Pawel K. Lorkiewicz , Joseph B. Moore IV , Steven P. Jones , Bradford G. Hill
{"title":"Pyruvate kinase splice variants in fibroblasts influence cardiac remodeling after myocardial infarction in male mice","authors":"Collin K. Wells , Daniel C. Nguyen , Robert E. Brainard , Lindsey A. McNally , Maleesha De Silva , Kenneth R. Brittian , Lauren Garrett , Madison S. Taylor , Yania Martinez-Ondaro , Caitlin Howard , Snigdha Suluru , Sujith Dassanayaka , Tamer M.A. Mohamed , Richa Singhal , Andrew A. Gibb , Pawel K. Lorkiewicz , Joseph B. Moore IV , Steven P. Jones , Bradford G. Hill","doi":"10.1016/j.yjmcc.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Fibroblasts are crucial for cardiac repair after myocardial infarction (MI). In response to signaling cues, they differentiate to phenotypes with robust capacities to synthesize and secrete extracellular matrix (ECM) and signaling molecules. Although activated fibroblast phenotypes are associated with pronounced changes in metabolism, it remains unclear how the metabolic network upholds the effector functions of fibroblasts in the infarcted heart. We found that two enzymes that could facilitate a phosphoenolpyruvate cycle, i.e. pyruvate kinase muscle isoform 2 (PKM2) and phosphoenolpyruvate carboxykinase 2 (PCK2), are elevated in the heart after MI. Although <em>Pck2</em> deletion had no effect on post-MI remodeling, fibroblast-specific switching of <em>Pkm2</em> to <em>Pkm1</em> (fb<em>Pkm2 → 1</em>) mitigated ventricular dilation, wall thinning, and losses in ejection fraction caused by MI. Despite these salutary effects, fb<em>Pkm2 → 1</em> switching did not alter cardiac fibrosis in vivo, nor did it affect collagen production, cytokine or chemokine secretion, myofibroblast differentiation markers, or transcriptional regulation in vitro. Nevertheless, <em>Pkm2 → 1</em> splice variant switching increased myofibroblast contractile activity as well as influenced the metabolic phenotype of fibroblasts, as shown by increased pyruvate kinase activity, higher mitochondrial respiratory capacity, and elevation in glycolytic intermediate abundance. Despite these changes, <em>Pkm2 → 1</em> switching had relatively minor effects on glucose carbon fate, as determined by stable isotope-resolved metabolomics. Nevertheless, these metabolic data demonstrate that cardiac fibroblasts exhibit minimal glucose-supported de novo glycine synthesis in vitro, yet possess high hexosamine and glucuronate biosynthetic pathway activity. Collectively, these findings reveal that fibroblast PKM isoforms influence post-MI remodeling, highlighting pyruvate kinase as a potential therapeutic target.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 11-26"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001166","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblasts are crucial for cardiac repair after myocardial infarction (MI). In response to signaling cues, they differentiate to phenotypes with robust capacities to synthesize and secrete extracellular matrix (ECM) and signaling molecules. Although activated fibroblast phenotypes are associated with pronounced changes in metabolism, it remains unclear how the metabolic network upholds the effector functions of fibroblasts in the infarcted heart. We found that two enzymes that could facilitate a phosphoenolpyruvate cycle, i.e. pyruvate kinase muscle isoform 2 (PKM2) and phosphoenolpyruvate carboxykinase 2 (PCK2), are elevated in the heart after MI. Although Pck2 deletion had no effect on post-MI remodeling, fibroblast-specific switching of Pkm2 to Pkm1 (fbPkm2 → 1) mitigated ventricular dilation, wall thinning, and losses in ejection fraction caused by MI. Despite these salutary effects, fbPkm2 → 1 switching did not alter cardiac fibrosis in vivo, nor did it affect collagen production, cytokine or chemokine secretion, myofibroblast differentiation markers, or transcriptional regulation in vitro. Nevertheless, Pkm2 → 1 splice variant switching increased myofibroblast contractile activity as well as influenced the metabolic phenotype of fibroblasts, as shown by increased pyruvate kinase activity, higher mitochondrial respiratory capacity, and elevation in glycolytic intermediate abundance. Despite these changes, Pkm2 → 1 switching had relatively minor effects on glucose carbon fate, as determined by stable isotope-resolved metabolomics. Nevertheless, these metabolic data demonstrate that cardiac fibroblasts exhibit minimal glucose-supported de novo glycine synthesis in vitro, yet possess high hexosamine and glucuronate biosynthetic pathway activity. Collectively, these findings reveal that fibroblast PKM isoforms influence post-MI remodeling, highlighting pyruvate kinase as a potential therapeutic target.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.