Journal of Integrative Agriculture最新文献

筛选
英文 中文
Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood-brain barrier permeability1 猪链球菌血清型 2 胶原酶样蛋白酶通过增加血脑屏障通透性促进脑膜炎1
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-06-27 DOI: 10.1016/j.jia.2024.06.005
Jikun Mei, Xuan Jiang, Fengyang Li, Zengshuai Wu, Tong Wu, Junhui Zhu, Hexiang Jiang, Ziheng Li, Na Li, Liancheng Lei
{"title":"Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood-brain barrier permeability1","authors":"Jikun Mei, Xuan Jiang, Fengyang Li, Zengshuai Wu, Tong Wu, Junhui Zhu, Hexiang Jiang, Ziheng Li, Na Li, Liancheng Lei","doi":"10.1016/j.jia.2024.06.005","DOIUrl":"https://doi.org/10.1016/j.jia.2024.06.005","url":null,"abstract":"serotype 2 (SS2) is an emerging zoonotic pathogen that causes meningitis in humans and pigs. It not only brings huge economic losses to the pig industry but also seriously threatens public health security. However, the mechanisms by which SS2 enters the brain and induces meningitis is not fully understood. Here, we investigated the role and mechanism of the SS2 collagenase-like protease (Clp) in promoting the passage of the bacterium across the blood-brain barrier (BBB). We found that SS2 Clp enhanced virulence and tissue colonization, and promoted the destruction of the BBB in mice. Compared with wild-type SS2, the ability of a Δ mutant to cross human brain microvascular endothelial (hCMEC/D3) cell monolayers decreased, whereas the addition of recombinant protein rClp increased permeability. rClp also significantly promoted the adhesion of SS2 to hCMEC/D3, inhibited the expression of intercellular tight junction proteins ZO-1, Occludin, and Claudin-5 independent of its enzyme activity, and induced hCMEC/D3 apoptosis through the cell receptor ligand apoptosis and mitochondrial apoptosis pathways partly dependent on its enzyme activity, resulting in BBB destruction and increased permeability. Moreover, Clp increased macrophage (F4/80+), monocytes (F4/80-Ly6C+), and neutrophils (Ly6G+) infiltration into the brain after SS2 infection. Thus, SS2 Clp is required for the passage of the bacterium across the BBB, and the results, provide a theoretical basis for better prevention and treatment of SS2-induced meningitis.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality 锦葵科果胶酶(PEL)基因家族成员的全基因组鉴定及其对棉纤维质量的贡献
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-06-27 DOI: 10.1016/j.jia.2024.06.011
Qian Deng, Zeyu Dong, Zequan Chen, Zhuolin Shi, Ting Zhao, Xueying Guan, Yan Hu, Lei Fang
{"title":"Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality","authors":"Qian Deng, Zeyu Dong, Zequan Chen, Zhuolin Shi, Ting Zhao, Xueying Guan, Yan Hu, Lei Fang","doi":"10.1016/j.jia.2024.06.011","DOIUrl":"https://doi.org/10.1016/j.jia.2024.06.011","url":null,"abstract":"Pectin is a major constituent of the plant cell wall. Pectate lyase (PEL, EC 4.2.2.2) uses anti-β-elimination chemistry to cleave the α-1,4 glycosidic linkage in the homogalacturonan region of pectin. However, limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae. In this study, we identified 597 PEL genes from 10 Malvaceae species. Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies: Clades I, II, III, IV, Va, and Vb. The two largest subfamilies, Clades I and II, contained 237 and 222 PEL members, respectively. The members of Clades Va and Vb only contained four or five motifs, far fewer than the other subfamilies. Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in species. The PELs from Clades I, IV, Va, and Vb were expressed during the fiber elongation stage, but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages. We further performed single-gene haplotype association analysis in 2,001 accessions and 229 accessions. Interestingly, 14 PELs were significantly associated with fiber length and strength traits in with superior fiber quality, while only eight genes were found to be significantly associated with fiber quality traits in . Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1 全面分析 LysM 蛋白家族以及调控 Setosphaeria turcica 植物免疫的关键 LysM 效应子 StLysM1 的功能特征1
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-06-27 DOI: 10.1016/j.jia.2024.06.006
Xiaodong Gong, Dan Han, Lu Zhang, Guibo Yin, Junfang Yang, Hui Jia, Zhiyan Cao, Jingao Dong, Yuwei Liu, Shouqin Gu
{"title":"Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1","authors":"Xiaodong Gong, Dan Han, Lu Zhang, Guibo Yin, Junfang Yang, Hui Jia, Zhiyan Cao, Jingao Dong, Yuwei Liu, Shouqin Gu","doi":"10.1016/j.jia.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.jia.2024.06.006","url":null,"abstract":"LysM proteins contain the lysin domain (LysM), bind chitin and are found in various organisms including fungi. In phytopathogenic fungi, certain LysM proteins act as effectors to inhibit host immunity, thus increasing fungal virulence. However, our understanding of the LysM protein family in is limited. In this study, eight genes are identified and designated as to . The analysis of sequence features indicates that five proteins (StLysM1, StLysM2, StLysM5, StLysM6, and StLysM7) are potential effectors. Phylogenetic analysis suggests that the StLysMs are divided into fungal/bacterial and fungus-specific subclasses. Domain architecture analysis reveals that the five StLysM effectors exclusively harbor the LysM domain, whereas the other three StLysM proteins contain additional functional domains. Sequence conservation analysis shows that the fungal-specific LysM domain sequences share the GDxTC and WNP motifs as well as three highly conserved cysteine residues. Conversely, the LysM domain sequences from the bacterial/fungal branch have few conserved sites. Moreover, expression profiling analysis shows that the gene is significantly upregulated during the infection of maize. Yeast secretion assays and transient expression experiments demonstrate that StLysM1 is a secreted protein that can suppress BAX/INF1-induced programmed cell death in . Further functional analysis suggests that StLysM1 cannot interact with itself but it can bind chitin. The transient expression of inhibits the chitin-triggered plant immune response, increasing susceptibility to the phytopathogenic fungus in . This study reveals that the LySM protein family consists of eight members, highlighting the significance of StLysM1 as a vital effector in regulating plant immunity. The results provide insight into StLysMs and establish a foundation for understanding the roles of StLysM proteins in the pathogenic process of","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancer of Shoot Regeneration 2 (ESR2) regulates pollen maturation and vitality in watermelon (Citrullus lanatus) 嫩枝再生促进因子 2(ESR2)调控西瓜(Citrullus lanatus)花粉的成熟和活力
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-31 DOI: 10.1016/j.jia.2024.05.032
Hu Wang, Lihong Cao, Yalu Guo, Zheng Li, Huanhuan Niu
{"title":"Enhancer of Shoot Regeneration 2 (ESR2) regulates pollen maturation and vitality in watermelon (Citrullus lanatus)","authors":"Hu Wang, Lihong Cao, Yalu Guo, Zheng Li, Huanhuan Niu","doi":"10.1016/j.jia.2024.05.032","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.032","url":null,"abstract":"Watermelon () holds global significance as a fruit with high economic and nutritional value. Exploring the regulatory network of watermelon male reproductive development is crucial for developing male sterile materials and facilitating cross-breeding. Despite its importance, there is a lack of research on the regulation mechanism of male reproductive development in watermelon. In this study, we identified that , a VIIIb subclass member in the (/) superfamily, was a key factor in pollen development. RNA hybridization confirmed significant expression in the tapetum and pollen during the later stage of anther development. The pollens of transgenic plants showed major defects in morphology and vitality at the late development stage. The RNA-seq and protein interaction assay confirmed that regulates pollen morphology and fertility by interacting with key genes involved in pollen development at both transcriptional and protein levels. These suggest that Enhancer of Shoot Regeneration 2 (ESR2) plays an important role in pollen maturation and vitality. This study helps understand the male reproductive development of watermelon, providing a theoretical foundation for developing male sterile materials.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd2 causes loss of conidiation and pathogenicity in Pyricularia oryzae 线粒体 G-3-P 脱氢酶 Gpd2 的胞吐路由导致营养代谢和细胞氧化还原脱钩,从而导致黄粉虫分生和致病性丧失
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.021
Wenqin Fang, Yonghe Hong, Tengsheng Zhou, Yangdou Wei, Lili Lin, Zonghua Wang, Xiaohan Zhu
{"title":"Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd2 causes loss of conidiation and pathogenicity in Pyricularia oryzae","authors":"Wenqin Fang, Yonghe Hong, Tengsheng Zhou, Yangdou Wei, Lili Lin, Zonghua Wang, Xiaohan Zhu","doi":"10.1016/j.jia.2024.05.021","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.021","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection A 型产气荚膜梭菌的代谢物棕榈酸能增强猪肠道冠状病毒猪流行性腹泻病毒的感染能力
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.014
Shanshan Qi, Haoyang Wu, D. Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei-ming Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun
{"title":"Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection","authors":"Shanshan Qi, Haoyang Wu, D. Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei-ming Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun","doi":"10.1016/j.jia.2024.05.014","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.014","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid on-site genotyping of the ovine prolific FecB mutation using a CRISPR/Cas12a-based detection system 利用基于 CRISPR/Cas12a 的检测系统对绵羊多产 FecB 突变进行快速现场基因分型
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.013
Tingjie Wu, Jiayuan Sun, Lijin Lu, Chen Wang, Shiwei Zhou, Yulin Chen, Xinjie Wang, Xiaolong Wang
{"title":"Rapid on-site genotyping of the ovine prolific FecB mutation using a CRISPR/Cas12a-based detection system","authors":"Tingjie Wu, Jiayuan Sun, Lijin Lu, Chen Wang, Shiwei Zhou, Yulin Chen, Xinjie Wang, Xiaolong Wang","doi":"10.1016/j.jia.2024.05.013","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.013","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral secretions: A key molecular interface of plant-insect herbivore interactions 口腔分泌物:植物-昆虫食草动物相互作用的关键分子界面
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.018
Bin Li, Wangpeng Shi, Shaoqun Zhou, Guirong Wang
{"title":"Oral secretions: A key molecular interface of plant-insect herbivore interactions","authors":"Bin Li, Wangpeng Shi, Shaoqun Zhou, Guirong Wang","doi":"10.1016/j.jia.2024.05.018","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.018","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141043340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZmCals12 impacts the maize growth and development by regulating symplastic transport ZmCals12 通过调节交感运输影响玉米的生长和发育
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.010
Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao
{"title":"ZmCals12 impacts the maize growth and development by regulating symplastic transport","authors":"Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao","doi":"10.1016/j.jia.2024.05.010","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.010","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141045006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling 在小麦籽粒灌浆期的干旱胁迫下,抗旱处理可提高小麦籽粒的淀粉和蛋白质质量
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.008
Liulong Li, Zhiqiang Mao, Pei Wang, J. Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang
{"title":"Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling","authors":"Liulong Li, Zhiqiang Mao, Pei Wang, J. Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang","doi":"10.1016/j.jia.2024.05.008","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.008","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信