Xueliang Zhao, Yongqiang Miao, Hongmei Chen, Honghu Shan, Juan Wang, Yang Wang, Jianzhong Shen, Zengqi Yang
{"title":"Identification of a novel multi-drug resistant plasmid co-harbouring Extended-Spectrum β-Lactamase resistance genes blaPER-4 and blaOXA-10 in Moellerella wisconsensis of sheep","authors":"Xueliang Zhao, Yongqiang Miao, Hongmei Chen, Honghu Shan, Juan Wang, Yang Wang, Jianzhong Shen, Zengqi Yang","doi":"10.1016/j.jia.2024.03.040","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.040","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Li, Xingkui An, Shuang Shan, Xiaoqian Pang, Xiaohe Liu, Yang Sun, Adel Khashaveh, Yong-jun Zhang
{"title":"Functional characterization of sensory neuron membrane protein 1a involved in sex pheromone detection of Apolygus lucorum (Hemiptera: Miridae)","authors":"Yan Li, Xingkui An, Shuang Shan, Xiaoqian Pang, Xiaohe Liu, Yang Sun, Adel Khashaveh, Yong-jun Zhang","doi":"10.1016/j.jia.2024.03.043","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.043","url":null,"abstract":"The mirid bug (Hemiptera: Miridae) is a polyphagous pest that affects a wide range of host plants. Its control remains challenging mainly due to its rapid reproduction, necessitating an understanding of sex pheromone communication. The recognition of sex pheromones is vital for courtship and mating behaviors, and is mediated by various chemosensory-associated proteins. Among these, sensory neuron membrane protein (SNMP), a CD36-related protein, is suggested to play crucial roles in detecting sex pheromones. In this study, we employed transcriptomic and genomic data from . and phylogenetic approaches, and identified four putative genes (, and ) with full open reading frames. Expression analysis revealed the ubiquitous presence of transcripts in multiple tissues, with only exhibiting male-biased expression in the antennae, suggesting its potential role in male chemosensation. Functional analysis using the oocyte expression system, coupled with two-electrode voltage clamp recording, demonstrated that the co-expression of AlucSNMP1a with specific pheromone receptors (PRs) and the co-receptor (Orco) significantly enhanced electrophysiological responses to sex pheromones compared to the co-expression of PRs and Orco alone. Moreover, the results indicated that the presence of AlucSNMP1a not only affected the responsiveness to sex pheromones but also influenced the kinetics (activation and inactivation) of the induced signals. In contrast, the co-expression of AlucSNMP1b with AlucPR/Orco complexes had no impact on the inward currents induced by two pheromone compounds. An examination of the selective pressures on genes across 20 species indicated strong purifying selection, implying potential functional conservation in various insects. These findings highlight the crucial role of AlucSNMP1a in the response to sex pheromones.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"14 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses reveal that MdDEF25 confers resistance to Fusarium solani","authors":"Mengli Yang, Jian Jiao, Yiqi Liu, Ming Li, Yan Xia, Feifan Hou, Chuanmi Huang, Hengtao Zhang, Miaomiao Wang, Jiangli Shi, Ran Wan, Kunxi Zhang, Pengbo Hao, Tuanhui Bai, Chunhui Song, Jiancan Feng, Xianbo Zheng","doi":"10.1016/j.jia.2024.03.039","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.039","url":null,"abstract":"Apple replant disease is a complex soil syndrome that occurs when the same fields are used repeatedly as apple orchards. Causes include different pathogens, with () as the main pathogen. disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees, significantly impacting the quality and yield of apples. In this study, we compared the transcriptomes of uninoculated apple saplings with those inoculated with . The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus and included several defensins. Plant defensins are antimicrobial peptides, but their roles during infection by remain unclear. We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues. In wild-type apple rootstock inoculated with , the root surface cells experienced severe damage, and significant differences were observed in the total root length, total root projection area, root tips, root forks, and the total root surface area compared to the control group. qRT-PCR analysis revealed that and were triggered in response to infection in apples. Subcellular localization showed specific expression of MdDEF3-YFP and MdDEF25-YFP proteins at the cell membrane. Overexpressing the fusion increased resistance against in apple, providing a new strategy for the future prevention and biological control of apple replant disease.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"47 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum, maize) based on UAV remote sensing","authors":"Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao","doi":"10.1016/j.jia.2024.03.042","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.042","url":null,"abstract":"Monitoring agricultural drought using remote sensing data is crucial for precision irrigation in modern agriculture. Utilizing unmanned aerial vehicle (UAV) remote sensing, this study explored the applicability of an empirical crop water stress index (CWSI) based on canopy temperature and three-dimensional drought indices (TDDI) constructed from surface temperature (), air temperature () and five vegetation indices (VIs) for monitoring the moisture status of dryland crops. Three machine learning algorithms (random forest regression [RFR], support vector regression, and partial least squares regression) were used to compare the performance of the drought indices for vegetation moisture content (VMC) estimation in sorghum and maize. The main results of the study were as follows: (1) Comparative analysis of the drought indices revealed that --Normalized Difference Vegetation Index (TDDIn) and --Enhanced Vegetation Index (TDDIe) were more strongly correlated with VMC compared with the other indices. The indices exhibited varying sensitivities to VMC under different irrigation regimes; the strongest correlation observed was for the TDDIe index with maize under the fully irrigated treatment (=−0.93); (2) Regarding spatial and temporal characteristics, the TDDIn, TDDIe and CWSI indices showed minimal differences over the experimental period, with coefficients of variation were 0.25, 0.18 and 0.24, respectively. All three indices were capable of effectively characterizing the moisture distribution in dryland maize and sorghum crops, but the TDDI indices more accurately monitored the spatial distribution of crop moisture after a rainfall or irrigation event. (3) For prediction of the moisture content of single crops, RFR models based on TDDIn and TDDIe estimated VMC most accurately (0.7), and the TDDIn-based model predicted VMC with the highest accuracy when considering multiple-crop samples, with and RMSE of 0.62 and 14.26%, respectively. Thus, TDDI proved more effective than the CWSI in estimating crop water content.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"32 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E.L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin
{"title":"Quantifying source-sink relationships in leaf-colour modified rice genotypes during grain filling","authors":"Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E.L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin","doi":"10.1016/j.jia.2024.03.034","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.034","url":null,"abstract":"Leaf-colour modification can affect the canopy photosynthesis, with a potential effect on rice yield and yield components. Also, modulating source-sink relationships through crop management has been used to improve crop productivity. This study aims to investigate whether and how modifying leaf colour alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-colour modified genotypes. Periodically collected data of total biomass and nitrogen (N) accumulation in rice genotypes of four genetic backgrounds and their leaf-colour modified (greener or yellower) variants were analysed, using a recently established model method to quantify the source-sink (im)balance during grain filling. Among all leaf-colour variants, only one yellower-leaf variant showed higher source capacity than its normal genotype. This was associated with increased post-flowering N-uptake that prolonged functional leaf-N duration, and this increased post-flowering N-uptake was possible because of reduced pre-flowering N-uptake. The density experiment showed that current management practices (insufficient planting density accompanied with abundant N application) were unsuitable for the yellower-leaf genotype, ultimately limiting its yield potential. Leaf-colour modification affects source-sink relationships by regulating N trade-off between pre-flowering and post-flowering uptake, and N translocation between source and sink organs. To best exploit leaf-colour modification for an improved crop productivity, adjustments of crop management practices are required.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"86 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mining elite loci and candidate genes for root morphology-related traits at seedling stage by genome-wide association studies in Upland Cotton (Gossypium hirsutum L.)","authors":"Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo","doi":"10.1016/j.jia.2024.03.037","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.037","url":null,"abstract":"The root system architecture plays an essential role in water and nutrient acquisition in plants and is significantly involved in plant adaptation to various environmental stresses. In this study, a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage, including main root length (MRL), root fresh weight (RFW), total root length (TRL), root surface area (RSA), root volume (RV), and root average diameter (AvgD). The correlation analysis between six root morphological traits revealed a strong positive correlation of TRL with RSA, RV with RSA and AvgD, whereas a significant negative correlation between TRL and AvgD. Subsequently, a genome-wide association study (GWAS) was performed using the root phenotypic data and genotypic data reported previously for 242 accessions using 56,010 single nucleotide polymorphisms (SNPs) from the CottonSNP80K array. A total of 41 quantitative trait loci (QTLs) were identified with 9 for MRL, 6 for RFW, 9 for TRL, 12 for RSA, 12 for RV and 2 for AvgD respectively. Among them, 8 QTLs were repeatedly detected in two or more traits. Integrated with transcriptome analysis, we identified 17 candidate genes with high transcripts of transcripts per million (TPM)≥30 in roots. Furthermore, we verified functionally a candidate gene encoding a WPP domain protein 2 in root development. Virus-induced gene silencing (VIGS) assay showed that knocking down significantly inhibited root development in cotton, indicating its positive role in root system architecture formation. Together, these results provide a theoretical basis and candidate genes for cotton root developmental biology and root-related cotton breeding.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"44 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu
{"title":"Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration","authors":"Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu","doi":"10.1016/j.jia.2024.03.035","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.035","url":null,"abstract":"Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage. However, it can also exacerbate problems such as wheat floret degeneration, leading to reduced yields. Therefore, investigating wheat floret degeneration mechanisms under low nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development. To investigate the physiological mechanism of low nitrogen stress affecting wheat floret degradation and whether exogenous brassinosteroids can alleviate this stress, three nitrogen application rates (N0, no nitrogen application; N1, 120 kg ha pure nitrogen; and N2, 240 kg ha pure nitrogen) and exogenous spraying experiments (N0CK, no nitrogen with water spraying; N0BR, no nitrogen with 24-epibrassinolide (an active brassinosteroids) spraying; and N1, 120 kg ha pure nitrogen with water spraying) were designed. The results indicated that low nitrogen stress induced a large amount of reactive oxygen species generation. Although wheat spikes synthesized flavonoids to combat oxidative stress, their energy metabolism (glycolysis and tricarboxylic acid cycle) and ascorbate-glutathione cycle were inhibited, keeping reactive oxygen levels elevated within the spike, inducing cell death and exacerbating floret degeneration. Furthermore, brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress. Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike, enhancing energy charge and effectively mitigating a portion of reactive oxygen induced by low nitrogen stress, thereby alleviating floret degeneration caused by low nitrogen stress. In summary, low-nitrogen stress disrupts the redox homeostasis of wheat spikes, leading to floret degeneration. Brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes. This research provides theoretical support for balancing the contradiction between high yields and sustainable development and is beneficial for the application of low nitrogen in production.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"294 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yayue Pei, Yakong Wang, Zhenzhen Wei, Ji Liu, Yonghui Li, Shuya Ma, Ye Wang, Fuguang Li, Jun Peng, Zhi Wang
{"title":"Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and Arabidopsis","authors":"Yayue Pei, Yakong Wang, Zhenzhen Wei, Ji Liu, Yonghui Li, Shuya Ma, Ye Wang, Fuguang Li, Jun Peng, Zhi Wang","doi":"10.1016/j.jia.2024.03.036","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.036","url":null,"abstract":"The germination process of seeds is influenced by the interplay between two opposing factors: pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI), which collectively regulate patterns of pectin methylesterification. Despite the recognized importance of pectin methylesterification in seed germination, the specific mechanisms that govern this process remain unclear. In this study, we demonstrated that the overexpression of is associated with a decrease in PME activity and an increase in pectin methylesterification. This leads to the softening of the cell wall in seeds, which positively regulates cotton seed germination. AtPMEI19, the homologue in , plays a similar role in seed germination to GhPMEI53, indicating a conserved function and mechanism of PMEI in seed germination regulation. Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength. Additionally, the pathways of ABA and GA in the transgenic materials underwent significant changes, suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination. In summary, GhPMEI53 and its homologs alter the mechanical properties of cell walls, influencing the mechanical resistance of the endosperm or testa. Moreover, they impact cellular phytohormone pathways (e.g., ABA, GA) to regulate seed germination. These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction, and contribute to a more comprehensive understanding of the PME/PMEI super-gene family in plants.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"116 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen
{"title":"Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop","authors":"Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen","doi":"10.1016/j.jia.2024.03.033","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.033","url":null,"abstract":"Grain soybean [ (L.) Merr] shows potential as a forage crop following introduction from low to high due to the growth phenotype alteration. However, the application of this approach is impeded by the diverse ecological types of soybeans, their adaptability to the introduction, and the uncertainty surrounding the growth phenotype post-introduction. In this study, 24 grain soybean varieties from low-latitude regions (22-31°N) were introduced to the high-latitude northwestern Loess Plateau (39°N) between 2018 and 2019. The growth phenotypes were observed, and their forage productivity potential was assessed. All varieties displayed delayed flowering following cross-latitude introduction, with the vegetative growth phase of some varieties even exceeding their entire growth duration at their origin. Rapid dry matter accumulation rates were indicative of growth adaptation performance and formed the basis for soybean forage yield. Varieties from the tropical south China region exhibited significant yield advantages, with dry matter yields of 8.97-14.68 t ha and crude protein yields of 1.44-2.51 t ha. Varieties HX3 and GX7, originating from this region, demonstrated optimal growth adaptability and productivity in the cross-latitude environment, achieving the highest dry matter yields of 14.68 and 13.86 t ha, respectively. As a result, HX3 and GX7 are recommended for local farming systems to provide high-quality forage. The cross-latitude introduction of soybean is proposed as a viable and efficient strategy for forage improvement and application.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"96 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pod-shattering characteristic differences between shattering-resistant and shattering-susceptible common vetch accessions are associated with lignin biosynthesis","authors":"Xueming Dong, Jiwei Chen, Qiang Zhou, Dong Luo, Longfa Fang, Wenxian Liu, Zhipeng Liu","doi":"10.1016/j.jia.2024.03.032","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.032","url":null,"abstract":"The common vetch ( L.) is a self-pollinated annual forage legume that is widely distributed worldwide. It has wide adaptability and high nutritional value and is commonly used as an important protein source for livestock feed. However, pod shattering seriously limits the yield of common vetch. To clarify the mechanism of pod shattering in common vetch, the pod walls of three shattering-resistant (SR) accessions (B65, B135, and B392) and three shattering-susceptible (SS) accessions (L33, L170, and L461) were selected for transcriptome sequencing. A total of 17190 differentially expressed genes (DEGs) were identified in the pod wall of B135 and L461 common vetch at 5, 10, 15, 20, and 25 days after anthesis. KEGG analysis showed that “phenylpropanoid biosynthesis” was the most significantly enriched pathway, and 40 structural genes associated with lignin biosynthesis were identified and differentially expressed in B135 and L461 common vetch. We analysed the DEGs in the pod wall of three SR and three SS accessions at 15 days after anthesis, and most of the DEGs were consistent with the significant enrichment pathways identified in B135 and L461 common vetch. The total lignin content of SR accessions was significantly lower than the SS accessions. The present study lays a foundation for understanding the molecular regulatory mechanism of pod shattering related to lignin biosynthesis in common vetch and provides reference functional genes for breeders to further cultivate shattering-resistant common vetch varieties.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"85 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}